

Unterlagen für Updateseminar CAD und CAM VISI 2018 R2

VISI CAD/CAM für den Werkzeug-, Formen- und Modellbau

Inhaltsverzeichnis

1	Inst	allation und Einstellungen	5
	1.1	Installation	. 5
	1.2	VISI Launcher	. 5
	1.3	Migrations-Tool (Update-Tool)	. 5
2	Allg	emeines und Benutzeroberfläche	. 7
	2.1	Benutzeroberfläche	. 7
	2.2	Allgemeines und Systemeinstellungen	. 9
	2.3	Datei Einfügen	10
	2.4	Kopieren / Einfügen	10
	2.5	Überarbeitete Dialogboxen	11
	2.6	Automatisches Ausrichten der Arbeitsebene	11
	2.7	Verbesserte Darstellung von Punkten und Punktesets	12
	2.8	Freihandkurven Auswahl	12
	2.9	Grafik Management: Kurztaste "W"	13
	2.10	Neue Option rechte Maustaste gedrückt halten	13
	2.11	Zeige kontextabhängige Werkzeugleiste bei Auswahl	14
	2.12	Grafikcursor Label automatisch ausblenden	14
	2.13		15
	2.14	Kolallon	10
	2.10		10
	2.10	Schnappschussmanager	10
	2.17		17
2	Moo	lolling	הכ
J		Offeet ven Element	20
	3.1 2.2	Clisel von Element	20 21
	33	Boolsche Operationen an Profilen	21 21
	3.3	Potiere Elemente Verbesserungen	21 22
	3.4	Features Editieren Verbesserungen	22 22
	3.5	Aufwickeln Verbesserungen	22
	3.7	7iehfläche 1 Leit– 2 Generierkurve Verbesserungen	23
	3.8	Automatik Eläche Verbesserungen	23
	3.9	Löcher automatisch schließen Verbesserungen	24
	3.10	Erweitere Flächen Verbesserung	25
	3.11	Trimmung zurück Verbesserung	25
	3.12	Flächen editieren	26
4	Fea	ture Manager	27
5	Sch	nittstellen	28
6	Μοι	ld	29
-	6.1	Mould Tool Design	29
	6.1.1	Werkzeugaufbau	29
	6.1.2	Standardelemente	31
	6.1.3	Konfigurationseinstellungen	31
	6.1.4	Funktionalitäten zum Editieren von Werkzeugaufbauten	32
	6.2	Füllanalyse	34
	6.3	Kühlung - Dokumentation	35
	6.4	Formplattenzentrierung	36
7	Pro	gress	37
	7.1	- Streifenanalyse	37
	7.1.1	Zweifach-Fallende Teile	37
	7.1.2	Streifenkräfte	37
	7.1.3	Streifenreport	38
	7.2	Materialmanager	38

	7.3	Blank	39
	7.3.1	Neue Library	39
	7.3.2	Zwangsbedingungen auf Faces	39
	7.3.3	Visualisierungsreport	39
	7.4	VISI-Blank Rückfederung	40
	7.4.1	Sicherheitsbereiche	40
	_ 7.4.2	Grenzformänderungsdiagramm	41
	7.5	Verschachtelung von Teilen (auf Blechtafel)	42
	7.5.1	Neue Parameter	42
	7.5.2	verschachtein von Korpern (Erodierbiockersteilung)	43
8	Sta	ndard Elemente	44
-	8.1	Bohrungsdefinition	. 44
	8.2	Elemente einfügen über einen Web-Link	45
	8.3	Elemente mit Verdrehsicherung als Defaulteinstellung	45
	8.4	Standardelemente mit Abbildern und Solidgruppen	46
	8.5	Kataloge	46
	8.6	CADENAS	46
~			47
9	VIS		4/
	9.1	verbesserungen bei der verzugsberechnung	41
	9.2	Anzeige der Nachdruckbedingungen	48
	9.3 0.4	Sequentielles Sprizen (Kaskade)	48 10
	9.4		40
10) CAI	Allgemein	49
	10 1	Finstellungen	40 49
	10.1	Werkstück Eigenschaften mit Default Mesh-Toleranz	40
	10.3	CAM Projekt Spiegeln	
	10.4	Verbesserungen im Werkzeugweg-Report (HTML & XLS Report)	54
	10.5	Aus Profiloperationen wird Boolsche Operationen an Profilen	56
	10.5	Aus Profiloperationen wird Boolsche Operationen an Profilen	56
11	10.5 I 2D (Aus Profiloperationen wird Boolsche Operationen an Profilen	56
11	10.5 2D (11.1	Aus Profiloperationen wird Boolsche Operationen an Profilen	56 58
11	10.5 2D (11.1 11.2	Aus Profiloperationen wird Boolsche Operationen an Profilen	56 58 58 63
11	10.5 2D (11.1 11.2 11.3	Aus Profiloperationen wird Boolsche Operationen an Profilen	56 58 58 63 66
11	10.5 2D (11.1 11.2 11.3 11.4	Aus Profiloperationen wird Boolsche Operationen an Profilen	56 58 63 66 67
11	10.5 2D 11.1 11.2 11.3 11.4 11.5	Aus Profiloperationen wird Boolsche Operationen an Profilen	56 58 58 63 66 67 68
11	10.5 2D 11.1 11.2 11.3 11.4 11.5 11.6 11.7	Aus Profiloperationen wird Boolsche Operationen an Profilen	56 58 58 63 63 66 67 68 68
11	10.5 2D 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8	Aus Profiloperationen wird Boolsche Operationen an Profilen	
11	10.5 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8	Aus Profiloperationen wird Boolsche Operationen an Profilen	56 58 58 63 63 66 67 68 68 69 71
11	10.5 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 2 3D (Aus Profiloperationen wird Boolsche Operationen an Profilen	56 58 58 63 63 66 67 68 68 69 71 72
11	10.5 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 2 3D (12.1	Aus Profiloperationen wird Boolsche Operationen an Profilen	56 58 58 63 63 66 67 68 68 69 71 72 72
11	10.5 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 2 3D 12.1 12.2	Aus Profiloperationen wird Boolsche Operationen an Profilen	56 58 58 63 63 66 67 68 68 69 71 72 72 73
11	10.5 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 2 3D 12.1 12.2 12.3	Aus Profiloperationen wird Boolsche Operationen an Profilen	
11	10.5 2D 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 2 3D 2 3D 12.1 12.2 12.3 12.4	Aus Profiloperationen wird Boolsche Operationen an Profilen	
11	10.5 2D 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 2 3D 2 3D 12.1 12.2 12.3 12.4 12.5	Aus Profiloperationen wird Boolsche Operationen an Profilen	
11	10.5 2D 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 2 3D 12.1 12.2 12.3 12.4 12.5 12.6	Aus Profiloperationen wird Boolsche Operationen an Profilen	
11	10.5 2D 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 2 3D 12.1 12.2 12.3 12.4 12.5 12.6 12.7	Aus Profiloperationen wird Boolsche Operationen an Profilen	
11	10.5 2D 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 2 3D 2 3D 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8	Aus Profiloperationen wird Boolsche Operationen an Profilen	
11	10.5 11.5 11.2 11.3 11.4 11.5 11.6 11.7 11.8 2 3D 12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 2 VIC	Aus Profiloperationen wird Boolsche Operationen an Profilen	
11 12 13	10.5 10.5 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 2 3D (12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 3 VIS	Aus Profiloperationen wird Boolsche Operationen an Profilen	
11 12 13 14	10.5 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 2 3D (12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 3 VIS 4 ISO	Aus Profiloperationen wird Boolsche Operationen an Profilen	
11 12 13 14	10.5 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 2 3D (12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 8 VIS 8 VIS	Aus Profiloperationen wird Boolsche Operationen an Profilen	
11 12 13 14 15	10.5 10.5 11.1 11.2 11.3 11.4 11.5 11.6 11.7 11.8 2 3D (12.1 12.2 12.3 12.4 12.5 12.6 12.7 12.8 3 VIS 4 ISO 5 Kinc	Aus Profiloperationen wird Boolsche Operationen an Profilen	

17.1 VCheck I (CMM) 98 17.2 VCheck II (Mill) 98 17.3 VCheck M 98	17 Me	essen	
17.2 VCheck II (Mill)	17.1	VCheck I (CMM)	
	17.2	VCheck II (Mill)	
	17.3	VCheckM	

Autoren: Holger Wüst, Walter Ottendorfer, Marko Bahns

1 Installation und Einstellungen

1.1 Installation

Die Version 2018 R2 unterstützt Windows 7, Windows 8, Windows 8.1 und Windows 10 in den 64bit Versionen. Nur die Pro/Professional Ausführung der aufgeführten Betriebssysteme wird unterstützt. 32bit Betriebssysteme werden nicht mehr unterstützt.

1.2 VISI Launcher

Der Launcher wird bei der Installation der VISI-Software automatisch mit installiert.

Da der CLS-Lizenzmanager und das Migrations-Tool (Update-Tool) ab 2018 R2 nur noch vom Launcher aus gestartet werden können, empfehlen wir die Verknüpfung nach der Installation auf dem Desktop zu belassen. Der VISI Launcher kann aber auch über das Windows Startmenü geöffnet werden.

Wenn Sie das Update-Tool nicht direkt nach der Installation ausführen, sondern später, achten Sie bitte unbedingt darauf, dass alle Sitzungen von VISI 2018 R2 geschlossen sind, damit es nicht zu Schreib- und Zugriffskonflikten beim Updaten der Konfigurationsdateien kommt.

1.3 Migrations-Tool (Update-Tool)

Ein erweitertes Update-Tool steht mit der Installation der Version 2018 R2 zur Verfügung. Es erlaubt ein Update von allen relevanten Konfigurationsdateien, Profilen, Benutzereinstellungen, Bibliotheken, CAM- Einstellungen (Werkzeugdatenbank, Maschinenkonfigurationen, Compass Einstellungen), Mould und Progress Bibliotheken etc.

Das Update-Tool wird über den VISI-Launcher gestartet.

Das Update-Tool wurde gegenüber der vorherigen Version erweitert. Es werden nun z.B. auch die Dateien für die Gewichtsabfrage und die HUD Schaltflächen upgedatet.

VISI Update mit Einstellungen aus vorherigem Release - 🗆 🗙										
Aktuelles Profil : Default										
Ordner vorherige VISI-Installation Update 2										
🚰 🛛 Update Libraries 🗹 Setze altes aktives Profil										
Vorherige Version der Dateien wiederherstellen (.bak) Originalversion der Dateien wiederherstellen (.ori)										
Beschreibungung	Dateiname	Update	~							
Position Werkzeugleisten Zeichenblatt	PV_FTBAR.ini	 ✓ 								
Einstellungen Mould Tool	Newmouldtool.cfg	 ✓ 								
Einstellungen Kühlung	Cooling.cfg	 ✓ 								
Einstellungen Teil-/Streifenanalyse	unfold_strip.cfg	 ✓ 								
Einstellungen Progress Tool	ProgressTool.cfg	 ✓ 								
Einstellungen Stempel	Punches.cfg	 ✓ 								
Einstellungen Standardelemente	param-ng.cfg	 ✓ 								
Flow Qualitätseinstellungen	FlowQualitySettings_Default.cfg	 ✓ 								
Flow Datenbank	FlowDefaultDbs.cfg	V								
Flow Lite Qualitätseinstellungen	FlowLiteQualitySettings_Default.cfg	V								
Flow Favoriten	FlowFavouriteMaterials.XML	 ✓ 								
Einstellungen Elektrode	Edm.cfg	 ✓ 								
Einstellungen Schnittstellen	ImportSpatial.cfg	 ✓ 								
CAM Einstellungen	Solmach.cfg	 ✓ 								
Einstellungen Vero-Post	Vero-Post.cfg	V								
Vergleich	compare.cfg	 ✓ 								
Krümmung	curvature.cfg	 ✓ 								
Formschrägenanalyse	analyser.cfg	V								
Reflexionen	Reflections.cfg	V								
Split	Split.cfg	 ✓ 								
Explosionsmanager	Exploded.cfg	V								
3D Bohrungstabelle	3DBoringChart.cfg	V								
Benutzerdefiniertes Applikationsmenü	ext3d.mnu	V								
Icons ICONS.cfg										
Icons Zeichenblatt	plotviewicons.cfg									
Assembly Manager Vorlagen	ASSEMBLYMANAGER.XML	 ✓ 								
Assembly Manager Klassen	ASSEMBLYMANAGERCLASSES.XML	 ✓ 								
Assembly Manager Trennzeichen	ASSEMBLYMANAGERSPLITTERS.XML	 ✓ 								
HUD Schaltflächen	HUDButtons.xml	 ✓ 								
HUD Schaltflächen Zeichenblatt	HUDButtonsPlotview.xml	 ✓ 								
Applikation Gewicht	Weight.cfg	v	~							

Folgende Schritte sind durchzuführen, um die Einstellungen aus der vorherigen Version 2017 R2 für die neu installierte Version 2018 R2 zu übernehmen:

- Man wählt das entsprechende Verzeichnis der Version, aus der man die Übernahme der Einstellungen durchführen möchte (z.B. C:\Visi2017R2)
- Grünen Haken bei allen Optionen **außer Icons** aktivieren
- Updateschalter drücken

Am Ende des Updatevorganges wird ein Bericht gezeigt mit der Auflistung aller Dateien, die beim Update angepasst wurden.

2 Allgemeines und Benutzeroberfläche

2.1 Benutzeroberfläche

DPI und Auflösungen für 4k Monitor

Eine automatische Einstellung (Skalierung über Betriebssystem) der passenden Größen für Icons, Texte und Rahmen passend zu Bildschirmauflösung und Benutzereinstellungen ist möglich. 4K Monitore werden unterstützt.

😼 🔊 🚓 🗬 📅 🔞 🦈 🛳 Attribute/Sichtbarkeit	20 🚺	Grafik
🧐 💯 📜 🎇 🧷 🔕 🏷 😇	k 😵 🖧 💕	<table-of-contents> 🛐 🛞 💽 🐖 💋</table-of-contents>
Ansichten	Arbeitsebenen	System

Zusätzlich sind neue Einstellungen in den Konfigurationsparametern verfügbar, um die Größe der Werkzeugleisten, Texte und Applikationen manuell anzupassen.

Design

Neue Auswahlmöglichkeit zum Ändern der Designfarbe der VISI-Oberfläche Klassisch, Dunkel, Dunkelgrau, Grau, Hell, Weiß

Befehlsschaltflächen

Die Größe der Schaltflächen wurde angepasst (verkleinert). In den Systemeinstellungen findet sich eine neue Option zum Ein- bzw. Ausblenden der 4 Schaltflächen am oberen Bildschirmrand (Bestätigen, Abbrechen, Eingabeschritt zurück, Eingabeschritt vor).

Befehlsschaltflächen ausblenden

HUD-Icons

Die Icons der oberen und seitlichen HUD Werkzeugleisten können jetzt vom Benutzer angepasst und erweitert werden.

Icons

In einigen Bereichen wurden die Icons aktualisiert.

2.2 Allgemeines und Systemeinstellungen

- Neue Option zum Deaktivieren der Auswahl der Scheitelpunktselektion von Solids bei aktivem Auswahlcursor
- Es steht eine neue Option zur Verfügung, die steuert, ob beim Starten von Modellingbefehlen automatisch die Vorschau gerechnet werden soll oder nicht.
- Eine neue Option in den Systemeinstellungen steuert die Position für angedockte Dialogboxen für die folgenden Befehle:
 - Ändere Attribute
 - Arbeitsebenen Manager
 - Ausgerichtete Faces Einstellungen ៉ 🖆
- Eine neue Option zum Ein- bzw. Ausschalten der Speicherung von eingegebenen Werten steht zur Verfügung

🗹 Behalte Eingabewerte

Systemdialogfenster angedockt

Klicken und Ziehen deaktivieren

Vorschau auf Befehle bei Start

- Der Auswahlmodus in der Statusleiste (Umschalten, Zufügen, Entfernen) wird nun beibehalten, wenn eine Sitzung beendet wird. Das Umschalten innerhalb des Befehls kann einfach über die Taste "A" erfolgen.
- Die Kurztasten wurden um den Bereich CAD Basisfunktionen erweitert. Hier stehen nun interne Befehlsoptionen wie "Flächen kopieren" u.a. zur Verfügung und können jeweils auf eine eigene Taste gelegt werden.

Kurztasten	
⊡- Menüeinträge	
⊞- Datei	
🗄 - Punktewolke	
🛓 Mesh	
🛓 Körper	
🗄 🛛 Operationen	
🖮 Modellieren	
🚊 CAD Basisfunktionen	
Flächen löschen	
- Flächen löschen und korrigieren	
Flächen herauslösen	
Flächen herauslösen und korrigie	eren
Flächen extrahieren	
Elemente projizieren	
Elemente aufprägen	
🛓 Analyse	
🛓 Elektrode	
🛓 Bemaßung	

• In den Zeichenblattparametern (Druckersetup) kann nun ein Zielordner für die Druckausgabe in Datei voreingestellt werden.

Optionen für Ausgabe in Datei								
Dateiname	\$(PageName)_\$(FileName)							
Ausgabeordner	VISI-DefaultDir 🧭							
Dateierweiterung								

- Erzeuge Profil durch Umrandung, Anpassen direkt, Schraffur etc. betrachtet nun auch Elemente, die außerhalb des sichtbaren Bildschirmbereiches liegen
- Der Befehl der Flächenanalyse kann nun während einer aktiven Formschrägenanalyse aufgerufen werden
- Neu ist die Möglichkeit, die Hintergrundebene mit einem WKF-Projekt zu speichern
- Die komplette Revisions-Historie eines Bauteils kann in einer Tabelle ausgegeben werden. Beim Erzeugen einer neuen Revision gibt es nun die Möglichkeit, die Bauteile zu sperren oder freizugeben
- Eine neue Option "*Diesen Dialog nicht mehr anzeigen*" steht nun zur Verfügung, wenn auf einem Layer gearbeitet wird, dieser aber nicht aktiv ist
- Für den Befehl *Text als Profil* gibt es eine neue Option für den Applikationspunkt wie bei der Erzeugung eines normalen Texts

 VISI zu PCDMIS-Oberfläche – Es ist nun möglich, innerhalb des PCDMIS eine Wkf-Datei zu laden, um so das CAD-Modell und die Punktedaten für eine automatische Messung auf einer CMM zu verwenden.

2.3 Datei Einfügen

- Dynamisches Platzieren der Elemente beim Einfügen von mehreren Dateien
- Dynamisches Platzieren der Elemente beim Einfügen von Inhalten aus Femddateien
- Undo / Redo jetzt auch nach Datei einfügen möglich

Kopieren / Einfügen

Beide Befehle arbeiten nun in Bezug auf die aktuelle Arbeitsebene. Das heißt, sowohl das Kopieren, als auch das Einfügen von Elementen kann von einer aktiven auf eine andere Arbeitsebene erfolgen. Die eingefügten Elemente behalten die korrekte Orientierung.

2.4 Überarbeitete Dialogboxen

Die einzelnen Bereiche sind klarer gekennzeichnet. Die Systemeinstellungen wurden in die Bereiche Allgemeine Einstellungen und Befehlseinstellungen unterteilt.

2.5 Automatisches Ausrichten der Arbeitsebene

Diese Funktion ermöglicht ein dynamisches Ausrichten der Arbeitsebene.

Ist die Option aktiviert (in den Systemeinstellungen), richtet sich das Achsenkreuz automatisch zu einem angefahrenen Element / einer Fläche aus.

Dies gilt für alle Befehle, bei denen das dynamische Achsenkreuz zum Einsatz kommt.

- Erzeuge Arbeitsebene
- Transformiere Arbeitsebene
- Geometrieerzeugende Befehle z.B. Quader, Zylinder ...

Folgende Steuerungsmöglichkeiten sind dabei verfügbar:

- Ziehen des Achspfeils: Die Ausrichtung erfolgt an Elementen, Flächen, Punkten und Nullpunkten unter dem Cursor
- Klicken und Ziehen des Achspfeils: Der Pfeil bewegt Sich direkt auf den neuen Applikationspunkt

- Drücken der Shift-Taste: Behält die aktuelle Ausrichtung bei, dies gilt auch für das Ziehen des Achspfeils
- Drücken der Alt-Taste und Ziehen der Achspfeile auf einen Punkt: Richtet die Achse zum gewählten Punkt aus.

2.6 Verbesserte Darstellung von Punkten und Punktesets

Es ist nun eine neue Darstellung für Punkte verfügbar. Diese kann in den Systemeinstellungen in den Grafikparametern aktiviert werden. Diese neue grafische Darstellung der Punkte ermöglicht ein viel schnelleres Arbeiten bei einer großen Anzahl an Punkten.

Bei der Darstellung als Kreuz oder Punkt ist es möglich, den einzelnen Punkten eine Farbe und Dicke zuzuweisen.

Durch diese Darstellung sind Grafikbewegungen wie Rotieren, Verschieben und Zoomen sofort verfügbar.

2.7 Freihandkurven Auswahl

Eine neue Möglichkeit, Elemente mit einer Freihandkurve auszuwählen. Wird die Alt + Mittlere Maustaste gehalten, können Elemente mit einer "Freihandkurve" direkt ausgewählt werden. Die Elemente müssen dabei mit der Maus "überfahren" werden.

Dies ist die gleiche Auswahlmethode, wie die "Polygonauswahl offen".

2.8 Grafik Management: Kurztaste "W"

Die Möglichkeit, zwischen Schattierung und Drahtmodellmodus zu wechseln, wurde jetzt auf alle Befehle erweitert, die Volumenkörper oder Flächen erzeugen. Auf diese Weise ist es möglich, die Vorschau eines Elements, welches schattiert angezeigt wird, durch Drücken der Taste "W" in die Drahtmodell Darstellung zu ändern. Dies war bisher nur für den Translationsbefehl möglich.

UTipp: Die Kurztaste "V" wechselt generell zwischen Drahtmodell und schattierter Ansicht

2.9 Neue Option rechte Maustaste gedrückt halten

Ist diese Funktion aktiv (Systemeinstellungen) und es wird innerhalb einer Funktion z.B. nach Anwahl einer Kante die rechte Maustaste gehalten, öffnet sich eine kontextabhängige Symbolleiste (der Befehl wird nicht bestätigt). Nun ist es möglich, einen anderen Befehl auszuwählen, der auf der ausgewählten Kante angewendet werden soll.

Bei anderen Befehlen wie z.B. Quader o.ä. öffnen sich bei gedrückter rechter Maustaste die Optionen und Filterauswahl. Diese waren bisher über die mittlere Maustaste erreichbar.

H - & % H 🔉 & @ 🛙 🛛
::: 🧱 🖵 🗨 🗣 🇊 🧊
🗑 🔁 😵 🌽 😅 🖄 🛠 ୩ 💿 🗌
🔿 🔸 逽 主 🖪 🖀 🍪

2.10 Zeige kontextabhängige Werkzeugleiste bei Auswahl

Ist diese Option aktiv, wird nach der Auswahl die kontextabhängige Werkzeugleiste automatisch am Cursor angezeigt, ohne dass ein Rechtsklick erforderlich ist. Für diese Option muss der automatische Auswahlcursor aktiv sein.

Die Einstellung befindet sich in den Systemeinstellungen.

Kontext Werkzeugleiste bei Auswahl anzeigen

2.11 Grafikcursor Label automatisch ausblenden

Ist diese Option in den Systemeinstellungen aktiv, werden die Infoboxen am Grafikcursor nur angezeigt, wenn der Mauscursor auf dem Grafikcursor steht.

Die Einstellung befindet sich in den Systemeinstellungen.

2.12 Skizzieren verbesserte Funktion

- Mit Enter bestätigte Werte sind gesperrt
- Gesperrte Werte werden grau hinterlegt
- Sind ein oder mehrere Werte gesperrt, können diese mit ESC wieder entsperrt werden und man gelangt zurück in das freie Skizzieren
- Enter führt den Befehl aus, sobald alle nötigen Werte bestätigt wurden
- Mit der TAB-Taste kann ein Wert entweder geändert / überschrieben werden oder durch Löschen und Enter wieder entsperrt werden

Diese Funktionalität steht nun auch beim Skizzieren von Quadern, Zylindern und Profilen zur Verfügung

2.13 Rotation

Hier stehen 2 neue Optionen zur Verfügung, Gleicher Abstand und Komplette Rotation.

2.14 Wähle gleich ausgerichtete Faces

Diese Funktion wurde erweitert und verbessert. Über die Einstellungen gelangt man zu sämtlichen Optionen, welche die Faceauswahl steuern und erleichtern.

Image: Second system Ebenen Zylinder Image: Second system Coplanar Auf gleicher Fläche Gleiche Auf Image: Second system Parallel Gleicher Radius Gleiche H Image: Second system Gleiche Normalbedingung Gleicher Radiusbereich Gleicher B Image: Gleiche Farbe Image: Gleiche Farbe Untere Begrenzung 0.5 Gleiche Farbe	Verrundungen Chse

Hinweis: Diese Auswahlmethode gilt nur für Faces desselben Körpers.

2.15 Layermanager

- Neuanordnung der Icons. Die Icons zur Steuerung der Layergruppen sind nun im unteren Bereich angeordnet
- Eine neue Spalte zeigt die Sichtbarkeit an und kann zum Ein- und Ausblenden von Layern verwendet werden, ohne die Strg-Taste zu drücken
- Ein Rasterfilter wurde zugefügt. Darüber lässt sich steuern, welche Layer generell angezeigt werden sollen
- Neue Befehle sind im Kontextmenü verfügbar. Wähle Elemente auf Layer selektiert alle Elemente des über die rechte Maustaste gewählten Layers, Wähle sichtbare Elemente selektiert alle sichtbaren Elemente

2.16 Schnappschussmanager

Der Snapshot-Manager wurde überarbeitet und verbessert. Es gibt jetzt die Möglichkeit der Erstellung eines Reports im Excel- oder PowerPoint Format.

Verbessertes Handling und verbesserte Benutzeroberfläche

Mit VISI 2018 R2 wird für den Schnappschuss Manager eine verbesserte Benutzeroberfläche zur Verfügung gestellt. Der neue Schnappschuss Manager erzeugt nun die Liste mit Schnappschüssen in einer Baumansicht, unterteilt in 3D Modellansicht und Zeichenblatt. Es ist möglich, eine Auswahl zu speichern oder zu exportieren. Dies ist sowohl für Schnappschüsse aus dem Modellbereich als auch aus dem Zeichenblattbereich möglich. Schaltet man zwischen Modellbereich und Zeichenblatt um, wird der jeweilige Bereich im Baum aktiviert. Die Reihenfolge der Schnappschüsse lässt sich über einen neuen Filter nach Zeit der Erzeugung, Name aufsteigend oder Name absteigend sortieren.

Über das Kontextmenü lassen sich Schnappschüsse löschen, umbenennen oder neu erfassen. Außerdem können die Hintergrundfarbe auf weiß geändert und ein Schnappschuss in die Zwischenablage kopiert werden.

Neue Option zur Erzeugung eines Excel-Reports

Erzeugte Schnappschüsse lassen sich nun direkt in einem Excel-Report ausgeben. Eine Excel Vorlagendatei ist vorhanden und kann benutzerspezifisch angepasst werden. Im Report können Firmendaten und Firmenlogos, sowie Links zu Schnappschuss-Bildern oder Links zu Variablen des WKF-Projekts angelegt werden.

00000	Schnappschuss Manager		
	🥟 💽 🚵 🛍 🔊	🗐 🔛 🚰 bmp	~
00000	🖃 🗔 🎦 Schnappschüsse	Excel Report	
8	🚊 🗔 🌗 Modellansicht		
8	🗹 🚮 Snapshot_3D_1		
	🗹 🌅 Snapshot_3D_2		
	📖 🗆 🚮 Snapshot_3D_3		

Nach Anklicken des Icons, wählen Sie die Excel-Vorlage für die Erzeugung des Reports aus.

> VISI2018R2 > Library > C	ommon > Cad > report >
Name	Änderungsdatum
Thickness	26.03.2018 09:22
🗐 Report.xlsm	06.03.2018 16:07

Nach Auswahl der Vorlage für das entsprechende Projekt werden alle mit der Excelvorlage verknüpften Images und Projektvariablen (in der Exceldatei aufgelistet), wie im nachfolgenden Bild zu sehen, automatisch erneuert und ausgefüllt.

	ţ													Reportalsm		
File				Pag	e Layout	Formulas	Data	Review	View	TEAM						
A6 • : × ✓ fx																
1	Α	E	3	с	D	E	F	G	Н	1	J	K	L	М	N	0
2		Auth	or		UserName											
3		Filen	ame:		Annotatio	ons.wkf										
4		Folde	n		C:\VISI201	7R2\Workf\Sa	imple\CAD									
5		Creat	tion date		Fri Aug 4	10:12:24 2017	1									
0		_														
0					Regina											
9									1000			I NE ENERT				
10									2000 C							
11		-				and the										
12																
13		- 1														
14									1903							
15		_				~										
16			1										l			
18		-														
19																
20 Be	efore	Text Sel	ected laye	ers Mi	ddle Text	Bottom Plat	e After Te	xt UserNar	ne Selecte	d layers						
21																
22		Ram	p angle													
24									Town in the second							
25							gugi nea 🚽									
27							848-0444-1983-00									
28																
30																
31					🎺	60	Contraction of the		9 ~							
33								1.00								
34																
36					007-Displa 24.70 (4)			6								
37								5 /								
39						and (2)	Box	7								
40																
42																
43																
4)-	She	et1	\oplus												
Ready																

Die eingefügten Schnappschuss Bilder werden an die festgelegte Zellengröße der Excelvorlage angepasst.

Neue Option zur Erzeugung eines PowerPoint-Reports

Zusätzlich steht eine neue Exportfunktion im PowerPoint Format zur Verfügung. Die Ausgabe wird über das entsprechende Icon aktiviert.

Schnappschuss Manager		Ŧ
🥟 🖻 🛍 🕵 🔲 🜌 🗟	🧃 ipg 🛛 🗸	Sortierung nach Erze 🗸
⊡… 🗹 🎦 Schnappschüsse ≟… 🗹 🍶 Modellansicht 🗹 📷 Snapshot_3D_1	PowerPoint Report	

Das System fragt auch hier nach einer Vorlagendatei, diese steht im angezeigten Ordner zur Verfügung

Änderungsdatum	Тур	Größe
26.03.2018 09:22	Dateiordner	
	Anderungsdatum 26.03.2018 09:22 06.03.2018 16:07	AnderungsdatumTyp26.03.2018 09:22Dateiordner06.03.2018 16:07Microsoft PowerP

Nachdem diese ausgewählt wurde, öffnet sich die ausgefüllte PowerPoint Präsentation

Hinweis: Das automatische Ausfüllen ist nur möglich, wenn in den PowerPoint Sicherheitseinstellungen alle Makros aktiviert werden. Ansonsten kommt eine Fehlermeldung und der Report wird nicht ausgefüllt.

3 Modelling

3.1 Offset von Element

Diese neue Funktion vereint alle 2D Offsetfunktionen in einem Befehl.

- Parallel Profil
- Parallelkurve (nur 2D)
- Parallelkreis
- Parallelstrecke

Neue Funktionen:

- Offset von Polylinien
- Offset von nichtlinearen Kanten
- Mehrfachauswahl
- Offset von mehreren Kanten einer ebenen Fläche als Profil
- Umkehren der Richtung für einzelne Elemente über die Label im Grafikbereich
- Beim Offset einer Kante: Ändere Offsetebene, um das Ergebnis auf der Nachbarebene / Fläche zu erzeugen

3.2 Elemente Extrudieren Verbesserungen

- Die Extrusionsrichtung wird automatisch definiert
- Alternative Richtungen können über eine Funktion am Label gewählt werden
- Umkehren der Extrusionsrichtung
- Automatische Boolsche Operationen

3.3 Boolsche Operationen an Profilen Wie im 3D stehen hierbei verschiedene Optionen zur Auswahl

3.4 Rotiere Elemente Verbesserungen

- Komplette Drehung (360°)
- Über die Icons Wähle Punkt und Wähle Richtung können innerhalb der Funktion Punkt und Richtung geändert werden
- Boolsche Operationen Subtrahieren und Vereinen wurden ergänzt

Elemente Rotieren:						
🗹 🔀 🖘 🗐						
	Parameter					
	Positiver Winkel 15 🚔					
	Negativer Winkel 0					
	Komplette Drehung					
	Wähle Punkt 🛛 🗙					
	Wähle Richtung 🛛 🥂					
	Boolsche Operation					
	Keine					
	O Subtrahieren					
	⊖ Vereinen					

3.5 Features Editieren Verbesserungen

- Überarbeitetes Interface mit erweiterten Optionen
- Translation: Kopieren von mehrfachen Features
- Translation: Achsenkreuz / Grafikcursor bei inkrementaler Translation
- Rotation: Grafikcursor für Winkel und Applikationspunkt
- Rotation: Neue Optionen gleicher Abstand und komplette Rotation
- Spiegeln: Die Spiegelebene wird während der Vorschau angezeigt
- Überarbeitung des Undo-Managements
- Neue Voreinstellungen der erweiterten Optionen

3.6 Aufwickeln Verbesserungen

- Die Max-Min Box Vorschau wird gestrichelt dargestellt
- Bestätigen des Befehls berechnet das finale Ergebnis, auch wenn nur die Max-Min Box Vorschau aktiv ist
- 3.7 Ziehfläche 1 Leit- 2 Generierkurve Verbesserungen
 - Enthalten Leit- und / oder Generierkurven tangentiale Übergänge, werden diese auf die Fläche übertragen

3.8 Automatik Fläche Verbesserungen

- Für Automatikfläche besteht nun die Möglichkeit, Profile und Polylinien zu wählen
- Neue Option, um Solids oder Materialstärke zu erzeugen
- Verbesserte Synchronisierung bei Anwahl von Kantenketten
- Automatische Synchronisation von Kurven

3.9 Löcher automatisch schließen Verbesserungen

- Löcher eines Solids können nun flächenübergreifend geschlossen werden
- Kanten eines Solids können gewählt werden, um Löcher zu schließen
- Zylindrische Flächen können durch Anwahl des Körpers automatisch geschlossen werden

3.10 Erweitere Flächen Verbesserung

- Flächen von Volumen und Flächenverbänden können direkt angewählt und erweitert werden. Die gewählten Flächen werden dabei automatisch kopiert.
- Kanten von einem Volumen oder Flächenverband lassen sich direkt erweitern

3.11 Trimmung zurück Verbesserung

- Flächen von Volumen und Flächenverbänden können direkt angewählt und zurückgetrimmt werden. Die gewählten Flächen werden dabei automatisch kopiert.
- Trimmung automatisch reparieren als neue Option, um Trimmprobleme zur Nachbarfläche zu beheben

3.12 Flächen editieren

Dieser neue Befehl ist eine erweiterte Version des Befehls Körperflächen bewegen.

- Bewegen und Extrudieren von Flächen in unterschiedliche Richtungen
- Flächen Rotieren
- Flächen Offsettieren
- Editieren von Verrundungen und Zylinderflächen
- Angrenzende Flächen wie Verrundungen oder Fasen werden automatisch mitgeführt

4 Feature Manager

Neue Bohrungsfeatures wurden ergänzt, bei denen der Anwender einen Durchmesser (gespeichert in der Datenbank) auswählt und das System automatisch die zugehörige Tiefe (ebenfalls in der Datenbank gespeichert) lädt.

Neue Gewindefeatures wurden ergänzt, bei denen der Anwender einen Durchmesser (gespeichert in der Datenbank) auswählt und das System automatisch die zugehörigen Tiefen (ebenfalls in der Datenbank gespeichert) lädt.

5 Schnittstellen

Folgende Schnittstellen wurden aktualisiert:

- DXF/DWG unterstützt Version 2018 Dateien (Upgrade der Datenbank auf Teigha 4.3.0)
- Inventor Version 2018 wird unterstützt
- Solid Edge Version ST10 wird unterstützt
- SolidWorks Version 2018 wird unterstützt
- STEP Semantic PMI Unterstützung für AP242 Dateien

Übersicht der unterstützten Schnittstellenversionen im Detail:

Readers	File Extensions	Versions Supported
ACIS	.sat, .sab, .asat, .asab	R1 – 2018 1.0
CATIA V4	.model, .exp	4.1.9 – 4.2.4
CATIA V5	.CATPart, .CATProduct, .CGR	V5R8 – V5-6R2017
3DExperience (CATIA V6)	.CATPart, .CATProduct, .CGR	Up to V6 R2017x
DXF/DWG	.dxf, .dwg	2018
IGES	.igs, .iges	Up to 5.3
INVENTOR	.ipt, .iam	V6 (V11for .iam) – V2018
JTOpen	.jt	10.0 or earlier
PARASOLID	.x_t, .x_b, .xmt_bin, .xmt_txt	30
NX	.prt	11 – NX 11.0.0
Pro/E - Creo	.prt, .prt.*, .asm, .asm.*	16 – Creo 4.0
Solid Edge	.par, .asm, .psm	V18 – ST10
SolidWorks	.sldprt, .sldasm	98 – 2018
STEP	.stp, .step	AP203, AP214, AP242
VDA-FS	.vda	1.0 - 2.0
Writers	File Extensions	Versions Supported
PDF	.pdf	1.7
ACIS	.sat, .sab, .asat, .asab	R18 – 2018 1.0
CATIA V5	.CATPart, .CATProduct	V5R15 – V5-6R2017
DXF/DWG	.dxf, .dwg	Various
IGES	.igs, .iges	5.3
JTOpen	.jt	Various
PARASOLID	.x_t, .x_b	Various
STEP	.stp, .step	AP203, AP214, AP242 (Geometry only)
VDA-FS	.vda	2.0

< V

Mould

6 Mould

6.1 Mould Tool Design

Mit VISI 2018 R1/R2 wird das neue Formenbaumodul Mould Tool Design eingeführt. Dieses Modul basiert auf der konsolidierten Assembly-NG Technologie, die die Grundlage verschiedener Applikationen innerhalb von VISI darstellt. Das neue Mould Tool profitiert dabei von der Erfahrung und der erzielten Stabilität der PARAM NG Engine der letzte Jahre. Nachfolgend eine Beschreibung der wichtigsten Neuerungen des neuen Moduls.

6.1.1 Werkzeugaufbau

Der Werkzeugaufbau kann entweder ausgehend von Lieferanten oder über Vorlagen definiert werden.

Wählt man einen Lieferanten, lädt das System alle relevanten Daten aus der Datenbank. Die Werkzeugvorlagen für die Platten und Standardelemente werden in speziellen Konfigurationsdateien gespeichert. Alle Daten für die Plattenabmessungen und die Positionierung der Standardelemente dagegen werden in der Datenbank abgespeichert. Wählt man einen Nicht-Standard Werkzeugaufbau, lädt das System alle relevanten Daten aus den Konfigurationsdateien. Es stehen mit der Standardinstallation bereits verschiedene Defaultvorlagen zur Verfügung. Der Anwender kann aber sein eigenes benutzerdefiniertes Layout erzeugen und als Defaultvorlage abspeichern. Ebenfalls können alle Daten für die Plattenabmessungen und Positionen der Standardelemente in Konfig-Dateien gespeichert werden, wobei es möglich ist, verschiedene Builder für Platten und Standardelemente zu setzen.

Das System erlaubt es, eine Benutzer Werkzeugvorlage zu erzeugen; jede Platte kann vom Anwender mit den verfügbaren CAD-Befehlen erzeugt oder aus einem anderen CAD-System importiert werden.

Über ein Lieferanten-Werkzeug können nun verschiedene Builder erzeugt werden, die die Plattenformen definieren, indem diese dann als "Platte" in die Werkzeugstruktur eingefügt werden. Die Platten können quaderförmig, als Klemmplatten, als *vorgebohrte* Platten oder als *Assembly*-Platten (mit oder ohne Standardelemente) definiert werden. Mit dieser Lösung können Platten unter Verwendung spezifischer Attribute zum Editieren, die für jede Builderplatte definiert wurden, neu aufgebaut werden. Auf diese Weise kann das System die Plattenabmessungen nach Änderung der Werkzeuggröße immer updaten.

Alle Daten, die sich auf die Plattenabmessungen beziehen, werden in einer entsprechenden Datenbank gespeichert, und so zeigt das System im Eigenschaftenbaum nur die verfügbaren Einstellungen an.

Mit einem Nicht-Standard Werkzeugaufbau verwendet das System die gleichen Builder, die für einen Standardaufbau gelten. Der einzige Unterschied ist in diesem Fall der, dass es möglich ist, alle den Platten zugehörigen Werte zu editieren bzw. zu modifizieren, da die Werte komplett frei definierbar sind und nicht mit einer Lieferantendatenbank verkettet sind.

6.1.2 Standardelemente

Im zweiten Reiter ermöglicht es das System, die Standardelemente aus einer Liste verfügbarer Vorlagen einzubauen. Verwendet man eine *Lieferanten*-Vorlage, lädt das System die korrekten Standardelemente des Lieferanten aus der Konfigurationsdatei sowie die korrekten Einbaupositionen der Elemente aus der Datenbank:

Beim Verwenden einer *Nicht-Standard* Vorlage lädt das System alle Defaultparameter aus der Konfigurationsdatei. Danach ist es möglich, Anzahl der Elemente, deren Position und Daten im Dialog zu ändern.

6.1.3 Konfigurationseinstellungen

Innerhalb der Konfigurationseinstellungen ist es möglich, die Defaultparameter für den Werkzeugaufbau und die Plattenattribute zu setzen. Darüber hinaus können der Defaultlieferant gesetzt und die Liste mit Lieferanten angelegt bzw. erweitert werden.

Einstellungen Tool Design			×
Einstellungen Tool Design Allgemeine Einstellungen	Wähle aktiven Lieferant 🤞	@	
Algemene Einstellungen DS Wairparnplate DS Leisten DS Aufspannplate DS Leisten DS Ausverfergundplate DS Ausverfergundplate DS Ausverfergundplate DS Ausverfergundplate DS Formplate DS Formplate AS Formplate Leisten Leisten Leisten Ausverfergundplate As Ausverfergundplate Ausverfergundplate	Wahle aktiven Leterant g Layout Einstellungen Werkzeuglieferant Tool Layout Leferant Standardelemente Layergruppe DS Layergruppe AS Layergruppe Auswerfer (AS) Layergruppe Auswerfer (AS) Layer Elemente DS Layer Elemente AS	Nicht-Standard Vicht-Standard Meusburger V schreiben Düsenseite Auswerferseite Auswerfer (DS) Auswerfer (AS) Standardelemente DS Standardelemente AS	
- AS Wärmeschutzplatte	Plattendicke beibehalten bei Änderung Werkzeugabmessung		
OK	A	bbrechen	

6.1.4 Funktionalitäten zum Editieren von Werkzeugaufbauten

In den verschiedenen Phasen der Werkzeugkonstruktion ist es oftmals notwendig, den Aufbau mehrfach zu ändern; das System erkennt Außenflächen automatisch. Während der Änderung der Plattengröße, erkennt das System die Anpassungen die notwendig sind und verschiebt die entsprechenden Flächen.

Das neue Mouldtool verfügt über flexible Editiermöglichkeiten während der Designphase, auch wenn die Platten bereits mit Aussparungen der Kavitäten versehen sind, die durch Modellingfunktionen erzeugt wurden.

Hat der Anwender in einer Platte zusätzliche modellierte Geometrie eingebracht, dann ist es notwendig, diese Designfeatures zu verschieben, dabei aber deren Positionierung entsprechend der Plattengröße beizubehalten. Es ist nun möglich, die Eigenschaften für die Faceverschiebungen zu definieren.

Zur Auswahl stehen drei Optionen:

Flächen zuweisen: Hier bestimmt man die Referenzfläche und die zugehörigen Flächen, die sich bei einer Änderung mit bewegen sollen

Flächen anzeigen: Bewegt man die Maus über die Referenzfläche, werden die verknüpften Flächen gehighlightet

Flächen zurücksetzen: Hiermit können Flächen zur bestehenden Auswahl hinzugefügt oder davon entfernt werden

Ändert man also die Abmaße einer modifizierten Platte, würden nur die Systembohrungen automatisch mitwandern, die modifizierten Bereiche aber nicht:

Werden die modellierten Flächen mit den Außenflächen verknüpft, bewegen sich diese bei einer Änderung ebenfalls mit:

Während der Werkzeugkonstruktion ist es oft notwendig, CAD-Befehle zum Editieren der Platten im Werkzeugaufbau auszuführen. Im Anschluss an diese CAD-Operationen ist das System nun in der Lage, den Werkzeugaufbau und damit natürlich den Projektbaum des Werkzeuges automatisch zu erneuern.

Wenn Sie z.B. eine Platte verschieben oder zerschneiden, werden diese Änderungen in der Werkzeugdesign-Struktur angezeigt:

Diese neuen, frei parametrisierbaren und sehr mächtigen Änderungsmöglichkeiten mit dem neuen Mould Tool Design helfen dem Werkzeugkonstrukteur, Änderungen an Werkzeugen noch effektiver und schneller durchzuführen.

6.2 Füllanalyse

Die neu in Mould integrierte Füllanalyse gestattet es nun dem Werkzeugkonstrukteur, eine einfache Überprüfung des rheologischen Füllvorganges eines Artikels durchzuführen. Basierend auf der zuvor durchgeführten Bauteildefinition, die das entsprechende Netz generiert, die Wandstärke prüft und das Material festlegt, wird nun ein Füllbild ermittelt. Man kann einen oder mehrere Anspritzpunkte definieren. Spritzdaten wie Einspritzzeit,

Verarbeitungstemperatur und Werkzeugtemperatur werden vorgeschlagen und können nach Erfahrung angepasst werden.

Das berechnete Resultat wird entsprechend dynamisch visualisiert und damit werden mögliche Bindenahttendenzen und Lufteinschlüsse leichter erkannt. Auch ob der gewählte Anspritzpunkt eine balancierte Füllung gewährleistet, ist damit gut zu erkennen.

Damit bekommt der Konstrukteur zusätzlich Informationen für die nun anstehende Werkzeugauslegung bezüglich Angusslage und Bereiche innerhalb der Kavität, wo er eventuell konstruktiv für Entlüftung sorgen muss.

Aufgrund der stark reduzierten Parameter (keine Temperatur, kein Spritzdruck, keine Scherspannung, usw.) ersetzt diese einfache Füllanalyse keine richtige rheologische Analyse wie in FlowLite oder gar das große VISI-Flow Paket.

6.3 Kühlung - Dokumentation

Die Kühlungsfunktionalität ermöglicht nun zur Dokumentation eine einfache Erzeugung eines separaten Temperierplanes. Dabei werden sämtliche Kreisläufe als Solids kopiert, auch wenn die Kreisläufe schon von den Platten subtrahiert worden sind.

Das so erstellte Dokumentationsschema wird auf einem extra definierbaren Layer abgelegt. Mit dem Schnappschussmanager kann dann relativ einfach eine Dokumentation der Kühlkreisläufe erstellt werden. Alternativ können der oder die Layer auch als Grundlage für eine Zeichnung des Temperierungslayouts dienen.

6.4 Formplattenzentrierung

Die Funktion zum Erstellen von Formplattenzentrierungen wurde überarbeitet. Das System zeigt verschiedene Tooltips zur besseren Beschreibung des Lock Builder Typs. Für jede Variable der Lock Builder Definition gibt es nun einen dynamischen Grafikcursor.

Der Builder zeigt die X-Richtung nach jedem Platzieren an, damit wird die Mehrfachpositionierung stark vereinfacht.

7 Progress

7.1 Streifenanalyse

7.1.1 Zweifach-Fallende Teile

Beim Erzeugen von Streifenlayouts mit zweifach fallenden Bauteilen gibt es nun einige Optionen, die die beiden Bauteile automatisch anordnen. Nachdem die Platine selektiert wurde, bietet das System diese neuen Optionen an. Das System berechnet die Max-Min Werte und bietet dann fünf automatische Positionierungsmöglichkeiten an (nebeneinander, übereinander, gespiegelt,...). Nach dem die Position bestätigt wurde, fährt das System wie gewohnt mit den Streifenparametern fort.

7.1.2 Streifenkräfte

Es gibt eine neue Möglichkeit, die Streifenkräfte in den einzelnen Stufen des Streifens darzustellen.

7.1.3 Streifenreport

Es wurde eine weitere Ausgabemöglichkeit für den Streifenreport zugefügt. Zusätzlich kann der Report nun im Excel-Format ausgegeben werden. Somit kann der Report noch einfacher an ein gewünschtes firmenspezifisches Layout angepasst werden.

1	A	В	С	D	E	F	G		H	1.1	J	K	L	M
1														
2	Autor	walter								-				
3	Dateiname:	Streifen_Meusb_Wkz_V20.wkf											ve	0
4	Verzeichnis	C:\Visi20-Demo\Progress\Seminar										-		Software
5	Erstellungsdatum	Tue Apr 3 11:23:54 2018				Strei	fendefinit	ion				-		
6									_					
7	Teile Parameter													
8	Streifenstärke:	1.5 mm												
9	Material:	1.0226 FeP02 G Z275												
10	Spezif. Gewicht:	7.86 Kg/dm ³												
11	Scherfestigkeit:	50.986 Kg/mm ²												
12														
13	Streifen Parameter													
14	Streifen Benennung:	Streifen. 2												
15	Anzahl Stationen:	15		•	"	~								
16	Streifenlänge:	390 mm			/	\geq	2							
17				•	-			3						
18	Biegestufendaten				<u> </u>	. í	1							
19	Station:	26 mm				11	\sim						
20	Streifenbreite:	90 mm			~	>_ ~ <		1						
21	Abfall oben:	2.102 mm				\sim				S				
22	Abfall unten:	2.102 mm						<		25	7			
23	Min. Abstand der Teile:	3.515 mm					~	9	<	1	25			
24	Drehwinkel:	0					-	<u>~</u>			~			
25								<	9	0/				
26	Berechne Parameter								-	Show				Sec. 1
27	Teilgewicht:	0.014 Kg								20			-	
28	Stufengewicht:	0.028 Kg								-	200	149	0	
29	Abfallgewicht:	0.013 Kg										<u>~</u> ~	100	>
30	Abfall:	48.34%										\sim		
31														
32	Streifenkräfte													
33	Scherkraft:	253.594 KN												
34	Biegekraft:	19.649 KN												
35	Flanschkraft:	0 KN												
36	Abstreifkraft:	25.359 KN												

7.2 Materialmanager

Der Materialmanager wurde überarbeitet und erweitert. Damit können die Blechwerkstoffe leichter erneuert, erzeugt und editiert werden. Zur besseren Visualisierung wird jetzt das Fileformat XML verwendet. Zusätzlich wurde eine Unterteilung in drei Datenbanken vorgenommen (System, Progress und Benutzer).

Alle bestehenden Materialien wurden aktualisiert und neue Materialien hinzugefügt.

Materialdatenbank									
🗹 💥 🐥	🗹 关 🐥 Famile	: Blech							
Aluminium	Materialname	Scherfestigkeit (Kg/mm²)	n	r	Max. zulässige Zugspannung (Mpa)	Spezifisches Gewicht (Kg/dm²)	Elastizitätsmodul (MPa)	Poisson Rate	Fließspannung (MPa)
Messing	1.0226 FeP02 G Z275	50.9858	0.2	1.8	296.7	7.86	209999.97	0	20
Kupfer	1.025 FeE320G C320	73.4196	0.094	1.142	524.79	7.8	209999.97	0	32
Tiefziehstahl	1.0330 FeP01 C	50.9858	0.15	1.1	323.77	7.83	209999.97	0	28
Default Materialien	1.0335 3C	50.9858	0.2	1.8	296.7	7.86	209999.97	0	17
Andere Materialien	1.0338 FeP04 ES	50.9858	0.18	1.6	306.72	7.8	209999.97	0	21
Riech	1.0347 FeP03 E	50.9858	0.16	1.3	317.79	7.844	209999.97	0	24
Edalatala	1.0350 FE	57.1041	0.196	1.65	334.46	7.86	209999.97	0	21
Cashi	1.0355 FeP05G GES	52.0055	0.24	1.8	284.83	7.8	209999.97	0	14
Stani	1.0374 DR620	50.9858	0.24	0.9	279.25	7.8	209999.97	0	57
ZINK	1.0489 E280C	50.9858	0.186	1.203	303.61	7.8	209999.97	0	28
	1.0921 IF180 Usidraw340	30.5915	0.18	1.7	184.03	7.844	209999.97	0	18
	1.0972 E315D E335D	101.9716	0.17	1	624.23	7.8	209999.97	0	31
	1.0980 E420D E445D	101.9716	0.137	0.7	664.1	7.8	209999.97	0	42
	1.4307 304L Z3CN18 10	50.9858	0.23	1	283.32	7.8	209999.97	0	22
	1.4310 301 Z11CN18 08E2	101.9716	0.19	1	603.18	7.8	209999.97	0	50
	1.8974 E690D	71.3801	0.112	0.82	489.74	7.844	209999.97	0	70
	1.8976 E620D	101.9716	0.15	0.786	647.54	7.8	209999.97	0	65
	22MnB5 650°C	52.0361	0.1684	1	319.45	7.83	99999.98	0.3	193.5
	22MnB5 700°C	42.5731	0.0972	1	302.03	7.83	99999.98	0.3	22
(L	001050000	07.0000			000.0	2.00	00000.00		~~

Des Weiteren kann nun auch eine Default-Materialfamilie gesetzt werden. Das so gesetzte Material wird dann bei allen Progress-Funktionen, welche Materialdaten benötigen, automatisch geladen.

7.3 Blank

7.3.1 Neue Library

Durch die Implementierung der aktuellen FTI Version (2018.0) konnte in VISI Blank die Kalkulationsgeschwindigkeit für die Ermittlung der Platinen nochmals gesteigert werden. Auch die integrierte Materialdatenbank wurde aktualisiert und ergänzt.

7.3.2 Zwangsbedingungen auf Faces

Bis jetzt konnten die Zwangsbedingungen nur auf Randkanten des Modells gesetzt werden. Diese Einschränkung wurde nun aufgehoben. Manchmal muss man, um die reale Blechhaltersituation nachzubilden, ein oder mehrere Faces eines Blechteiles auswählen können. Mit den neuen Iconoptionen kann nun jedes beliebige Face eines Artikels als fixierter Bereich definiert werden. Wie die Zwangsbedingungen an peripheren Kanten, kann nun auch bei Faces eine Zwangsbedingung in X, Y oder in beiden Richtungen festgelegt werden.

7.3.3 Visualisierungsreport

Auch die mit der Blankfunktionalität ermittelten Resultate können als Excel-Report ausgegeben werden.

2	Autor	walter			
3	Dateiname:	ExcelReport.WKF			vero
4	Verzeichnis	C:\Visi-Daten\V2018\V2018R2\Videos and Sam	ole files\Mould\7-VISIBIank&DisplayResult		Sales .
5	Erstellungsdatum	Tue Apr 3 14:30:49 2018	Resultat anzeigen		
6					
7	Teiledaten			5.58%	3.168
8					
9	Material:	DC02		3.41%	3.102
10	Theoretische Dicke:	3 mm			
11	Spezifisches Gewicht:	7.8 Kg/dm ³		1.23%	3.037
12					
13				-0.95%	2.971
14	Resultierende Daten				
15				-3.13%	2.906
16	Blank-Fläche:	8120 mm ²			
17	Blank-Umfang:	881 mm		-5.31%	2.841
18	Platinenbreite:	65 mm			
19	Platinenlänge:	236 mm		-7.49%	2.775
20	Gewicht:	0.19 kg			
21	Maximum Ausdünnung %:	5.6 %		-9.67%	2.71
22	Minimum Ausdünnung %:	-22.7 %			
23	Flanschkraft:	147 KN		-11.85%	2.645
24					
25				-14.03%	2.579
26		/			
27		<		-16.21%	2.514
28					
29				-18.38%	2.448
30					
31				-20.56%	2.383
32					
33				-22.74%	2.318

7.4 VISI-Blank Rückfederung

Wird das Bauteil aus der Matrize entfernt und die verformenden Kräfte fallen weg, findet eine elastische Dehnung statt und das Bauteil erfährt eine Rückfederung.

Obwohl diese oft vernachlässigt wird, kann die Rückfederung einen enormen Einfluss auf die resultierende Form des Bauteils haben. Eine größere Rückfederung macht es schwierig, die endgültigen Abmessungen des Bauteils zu steuern.

Diese neue Option in Visi Blank ermöglicht die Berechnung der Rückfederung eines Bauteils. Nach Eingabe der Materialdaten und Ermittlung der Platine wird ausgehend vom Nominalmesh ein Netz erzeugt. Dieses Netz zeigt die errechnete Rückfederung an.

Diese Option ist in 2017 R2 offiziell verfügbar und wurde mit 2018 R1/R2 nochmals erweitert.

7.4.1 Sicherheitsbereiche

Dies ist ein neuer Visualisierungsmodus und Bestandteil der Rückfederungsoption. Damit wird dem Benutzer erlaubt, die **Formbarkeit des abgewickelten Bauteils zu prüfen.** Es werden dabei 6 mögliche Zonen betrachtet, die während des Umformprozesses auftreten können:

- Starke Tendenz zur Faltenbildung leicht gedehnt in einer Richtung und komprimiert in der anderen Richtung mit Materialverdickung. Faltenbildung sehr leicht möglich
- **Tendenz zur Faltenbildung** gedehnt in einer Richtung und komprimiert in der anderen Richtung mit leichter Materialverdickung. Faltenbildung möglich
- **Niedrige Belastung** Minimale Dehnung oder Kompression entweder in Haupt- oder Nebenziehrichtung
- Sicher Bereich unterhalb Grenzformänderungskurve, in dem Fehler selten auftreten
- Geringfügig Zone zwischen Sicherheitsbereich und fehlgeschlagenen Bereichen
- Extreme Ausdünnung Bereich wo das Bauteil zwar nicht versagen wird aber die Ausdünnung sehr stark ist
- **Scherversagen** Bereich liegt über der Scherversagenskurve aber noch unterhalb der Grenzformänderungskurve. Die Wahrscheinlichkeit zu Versagen nimmt zu.
- Versagen Bereich oberhalb Grenzformänderungskurve, Material kann leicht reißen (lokale Ausdünnung)

7.4.2 Grenzformänderungsdiagramm

Neben der Visualisierung der Sicherheitsbereiche steht nun auch die Darstellung des Grenzformänderungsdiagramms zur Verfügung.

Das Grenzformänderungsdiagramm ist die graphische Darstellung des umformtechnischen Versagenseintritts für Blechwerkstoffe basierend auf Haupt- und Nebenformänderung. Es erlaubt eine Aussage über die Formänderungen, die ein Material ohne Einschnürung bzw. Reißen ertragen kann.

V

Verschachteln von Teilen auf Blechtafel

7.5 Verschachtelung von Teilen (auf Blechtafel)

7.5.1 Neue Parameter

Es kann nun global eine Maximum- und Minimumstückzahl für alle zu verschachtelnden Teile voreingestellt werden. Diese Option spart Zeit bei der Definition, da sehr oft die gleiche Anzahl für sämtliche Bauteile benötigt wird. Zur Erinnerung, setzt man die Max- und Min-Werte gleich, erhält man genau diese Stückzahl für jedes Teil auf der Blechtafel.

Verschachteln von Teilen auf Blechtafel

Verschachtelte Teile Fläche (mm²) Begrenzung LxB (mm) 1217940926 13759.18 104.39 x 196.20 1436797192 8097.59 90.34 x 230.32 1446630891 4332.59 57.64 x 119.71
X Wert 1000 Y Wert 1000 Randabstand 20 Spalt zwischen Bauteilen 10 Tafel erweitern Keine Image: Comparison of Setze Position Setze Position
Bauteiloptionen Ausrichtung erlaubt Alle ✓ Bauteilplatzierung Zwei Reste,auch wenn schr ✓ ✓ An alle anfügen Minimum Anzahl: 11 Maximum Anzahl: 22 ✓ Max. mögliche Anzahl anzeigen Verschachtelungsresultate Abfall: 42.15 %

Zusätzlich können nun Blechtafeln erweitert oder zusätzliche Blechtafeln angelegt werden. Das ist nützlich, falls die zuerst angegebene Blechtafelgröße für die gewünschte Teilezahl nicht ausreichen sollte.

 Verschächteln von Teilen a	uf Blechtafel		+ × 🚺
			chtafel
Verschachtelte Teile	Fläche (mm²)	Begrenzung LxB (mm)	fBle
1217940926	13759.18	104.39 x 196.20	n au
1436797192	8097.59	90.34 x 230.32	eile
1446630891	4332.59	57.64 x 119.71	6
- Tafelgröße			chteln v
XWert	1000		cha
YWert	1000		Vers
Randabstand	20		
Spalt zwischen Bauteilen	10		
Tafel erweitern	Weitere Tafel zufüg	en 🗸	
Setze Position			

7.5.2 Verschachteln von Körpern (Erodierblockerstellung)

Eine oft gewünschte Funktion ist das effektive Erstellen und Zusammenfassen der Stempel eines Werkzeuges zu Erodierblöcken. Hierzu kann nun die Verschachtelungsfunktionalität herangezogen werden.

Anstatt von Flächen gestattet diese Funktion nun auch das Anwählen von Körpern. Man wählt einfach die zu platzierenden Stempel des Werkzeuges an, gibt im Menü die Blockgröße und Minimumabstände ein und schon hat man einen optimal ausgelegten Erodierblock. Abschließend können natürlich noch die Einfädelpunkte festgelegt und der Block dokumentiert werden.

schachteln von Teilen a	uf Blechtafel			Ŧ	×
Verschachteite Teile	Fläche (m	m²) Begre	nzung LxE	3 (mr ^	
Stempel 3	176.00	22.00	x 8.00		
Stempel 4 Stempel 5	66.74 542.78	27.00	× 6.00	~	
(042.10	21.00	. 42.00	>	
Tafelgröße					
× Wert	110				
YWert	110				
Randabstand	8				
Spalt zwischen Bauteilen	6				
Tafel erweitern	Keine	~			
💣 🛛 Setze Position					
Bauteiloptionen					
Ausrichtung erlaubt	0* 90* 180* 23	70° ~			
Bauteilplatzierung	Zwei Reste,auch	wenn schr	~		
🗹 An alle anfügen					
Minimum Anzahl:	1				
Maximum Anzahl	1				
Max. mögliche Anzahl	anzeigen				
Verschachtelungsresulta	ite				
Abfal: 58.44 %					
Automatisch Vorsch	au				

8 Standard Elemente

8.1 Bohrungsdefinition

Es wurde eine neue Funktionalität entwickelt, die im Menü Standard Elemente verfügbar ist und das Einfügen von Standardelementen auch dann erlaubt, wenn in den als Start- und Endplatte selektierten Solids bereits die Kavitäten subtrahiert wurden.

Zusätzlich kann während der Bohrungsdefinition mit einem speziellen Icon noch bestimmt werden, ob diese Bohrungen bearbeitet oder nicht bearbeitet werden sollen. Die Featureerkennung im CAM-Modul erkennt dann die Bohrungen und bearbeitet diese mit dem notwendigen Zyklus oder überspringt die entsprechenden Bohrungen, da diese ja bereits in der gelieferten Platte vorhanden sind.

8.2 Elemente einfügen über einen Web-Link

Es ist nun möglich, Standardelemente über einen Weblink zu laden. Damit können vor allem seltene und nicht in den VISI-Standardkatalogen vorhandene Normalien leichter eingebaut werden. Durch Zufügen einer spezifischen Zeile in der entsprechenden Katalogkonfigurationsdatei lädt das System die entsprechende Internetseite und fügt das ausgewählte Element in VISI ein. Natürlich nur dann, wenn der entsprechende Internetkatalog das erlaubt (wie z.B. Hasco.com).

8.3 Elemente mit Verdrehsicherung als Defaulteinstellung

Es ist nun möglich, in den Element-Einstellungen Verdrehsicherungen als Standard voreinzustellen. Das gilt für Element, die diese Option beinhalten (Auswerfer, Angussdüsen und Schneidstempel).

ement speichem Globale Einstellungen CadEment Solution CadEment Solution CadEmas Solution C
Bohrungsdefinition Elementkonfiguration CADENAS Renutzer Element Baram NG CFG Dateien
Elementkonfiguration Mould-Katalog Einstellungen CADENAS Progress-Katalog Einstellungen Benutzer Element Element-Einstellungen Param NG CFG Dateien P
CADENAS CADENAS Benutzer Element Param NG CFG Dateien CADENAS CADENAS CADENAS Progress-Katalog Einstellungen Element-Einstellungen Element-Einstellunge
CADENAS Progress nature clinication generations of the second sec
Benutzer Element
Param NG CFG Dateien

8.4 Standardelemente mit Abbildern und Solidgruppen

Das Verhalten von Standardelementen in Kombination mit Abbildern und Solidgruppen wurde stark verbessert.

Wird nun ein Standardelement an einem Solid (Start- oder Endplatte) eingebaut, welcher bereits als Abbild definiert wurde, so erzeugt nun das System automatisch eine Solidgruppe, die das Standardelement und den Abbildsolid beinhaltet, während die andere Platte die ursprünglichen Eigenschaften behält. Damit wird verhindert, dass Abbilder aufgelöst werden. Somit ist es nun auch möglich, einen Formeinsatz als Abbild zu erstellen und zu kopieren. Wird zu einem späteren Zeitpunkt ein weiteres Standardelement in den Formeinsatz (Mehrfachkavität) zugefügt, wird auch hier automatisch eine Solidgruppe erstellt und die kopierten Formeinsätze werden aktualisiert, damit das neue Standardelement auch in diesen (Abbildern) eingebaut wird. Mit diesem Prozess wird das Standardelement inklusive seiner Kavität automatisch auf die anderen Einsätze des Werkzeuges übertragen.

Wird nun irgendein Standardelement in einem der Formnester editiert oder verschoben, wird auch das entsprechende Element in den anderen Formnestern automatisch aktualisiert. Dieses verbesserte Verhalten der Normalien und Formnester beschleunigt das Erzeugen, Verwalten und Ändern von Werkzeugen mit Mehrfachkavitäten. Aber auch generell bei Baugruppen mit vielen Solidgruppen und Abbildern kommt diese Optimierung zum Tragen.

8.5 Kataloge

Folgende Kataloge wurden erneuert:

- Meusburger
- Hasco
- Fibro (Schrauben und Zylinderstifte wurden an Vorgaben von Fibro angepasst)
- Auch alle anderen Kataloge wurden anhand von Angaben der Anwender erweitert.

8.6 CADENAS

Link to PARTdataManager: Unterstützung ab Version 9.07

9 VISI Flow

9.1 Verbesserungen bei der Verzugsberechnung

Um die Berechnung des Verzuges von Bauteilen noch zuverlässiger zu gestalten, wurde unter anderem der Algorithmus für die Nachdruckberechnung komplett überarbeitet. Des Weiteren wurde ein neuer Solver für die Berechnung von Druck und Fließrate während der Nachdruckphase implementiert. Vor allem durch die Optimierung des Berechnungsalgorithmus für den Verzug wurden zusätzlich zur Feinabstimmung der Berechnungsformeln die Performance dieses Teils der Analyse drastisch verbessert und so die Berechnungszeiten um über 40% reduziert.

Folgende Bilder stellen verschiedene Fälle eines Vergleichs der Verzugsberechnung und der tatsächlichen Verformung für ein glasfaserverstärktes Material dar.

9.2 Anzeige der Nachdruckbedingungen

Zum besseren Vergleich verschiedener Studien werden nun, wie bei der Füllung, auch in jeder Nachdruckstudie die Nachdruckbedingungen mit angezeigt. Nachdruck in MPa, Nachdruckzeit und Kühlzeit.

9.3 Sequentielles Spritzen (Kaskade)

Diese in der Option "Füllen" vorhandene wichtige Einspritztechnik, bei der das Füllen über zu verschieden Zeitpunkten zu öffnende Düsen gesteuert wird, wurde neu überarbeitet. Die Analyseergebnisse sind nun noch näher am realen Prozess und die in älteren Versionen manchmal zu hohen Druckanstiege werden nun besser kontrolliert.

9.4 Material Datenbanken

Die Datenbanken wurden wieder erweitert. Alle Stände wurden, unter Verwendung des TESTISO Referenzmodells überprüft, um korrekte lineare Schwindungswerte zu liefern. Zusätzlich wurden viele neue Sorten der Datenbank zugefügt.

10 CAM Allgemein

10.1 Einstellungen

Vorlagenordner

Ab VISI 2017 R2 hat der Anwender nun die Möglichkeit, einen Pfad für den CAM Vorlagenordner zu definieren. Es ist somit möglich, die Bearbeitungsvorlagen zentral zu verwalten

Eigenschaften		
Eigenschaften Generelle Einstellungen Defaults Benutzeroberfläche	Defaults Standardmaschine	3ax standard
3 Achsenbearbeitung 2.5 Ax Bearbeitung Wire EDM	Werkzeugdatenbank	.\Library\Common\Cam\DB\VITools.MDB
Werkzeugwegsimulation Rohteilanalyse 	NC-Maschinenordner Compassdatenbank	.\Library\Common\Cam\MachineTool
Automatische Erkennung Compasstechnologie	Vorlagenordner	E:\MB\CAM Templates\V2017R2\automa
Postprozessor CAM-Nullpunkt Parameter	Werkstückmaterial	2379

Bei der Auswahl der Bearbeitungsvorlagen werden nun zusätzlich auch die Namen der in der Vorlage gesicherten Operationen als Tool-Tipp angezeigt.

Prozessmanager

Das Fenster für den Prozessmanager wird nun im Standard ausgeblendet. Alle Fortschrittinformationen werden im Projektbaum des CAM Navigators angezeigt.

Erref Projekt: Projekt1 2379
🚊 🖳 Maschine: 3Ax_Standard - STANDARD_TNC530
📜 🧱 Werkzeugmagazin: Magazin1
🗄 🖞 🗁 unten mittig G O
🚊 🖳 🞦 Schruppen basierend auf Referenzoperation
🔔 – Schruppen <spiral> C : T10 - Eckenradiusfräser - D:12 R:2(R)</spiral>
🛄 👯 🗛 35% Schruppen <spiral> C Halterkontrolle deaktiviert: T40 - Kugelfräser - D:6(R)</spiral>
🖃 💼 Vorschlichten
☐ 100% Ebene Bereiche Bearbeitung <spirab: -="" 26%="" 70%="" 72%="" <auto="" <z="" <zigzagy:="" [32%="" bearbeitung="" bereiche="" c:="" d:12="" d:6="" d:8="" ebene="" ebene»="" eckenradiusfräser="" kugelfräser="" parallele="" r:1]="" r:2="" restmaterial="" schlichten="" schnitte="" t10="" t11="" t41="" z-konstant="" ☐=""> C: T45 - Kugelfräser - D:4</spirab:>

Über die CAM Einstellungen im Fenster **[Generelle Einstellungen]** unter **[Prozessmanager automatisch öffnen**] lässt sich das Fenster für den Prozessmanager wieder aktivieren, somit hat man das gleiche Verhalten wie in den vorangegangenen Versionen.

	Automatische Neuberechnung	
	Meshdaten in Preview-Ordner speichern	
	CAM-Nullpunkt automatische Gültigkeitsprüfung	
	Verwende Projektlayer	
	Setze Projektlayer als aktiven Layer	
(Prozessmanager automatisch öffnen	

CAM-Nullpunkt-Parameter (Virtuelle Winkel)

Für die Anwender eines 5-Achsen Bearbeitungszentrums gibt es nun die Möglichkeit, sich den virtuellen Anstellwinkel (3+2Achsen) anhand vom CAM-Setup direkt im Projektbaum anzeigen zu lassen. Diese Anzeige kann in den CAM Einstellungen im Fenster **[CAM-Nullpunkt-Parameter]** mit der Option **[Virtuelle Winkel im Abschnitt CAM-Nullpunkt anzeigen]** aktiviert werden.

Eigenschaften Generelle Einstellungen Defaults Benutzeroberfläche 3 Achsenbearbeitung 2.5 Ax Bearbeitung Wire EDM Werkzeugwegsimulation Rohteilanalyse Krümmungsanalyse Automatische Erkennung Compasstechnologie Postprozessor	Parameter für Nullpunktrefere Präfix für CAM Nullpunkt Methode f. Referenzpunkt Winkeltoleranz CAM Navigator Benutzerobe Virtuelle Winkel im Abschnitt	enz CAM-setup Aktueller Nullpunkt 0.01
---	---	---

Bei der Aktvierung in den CAM Einstellungen wird das System den virtuellen Winkel beginnend mit dem Buchstaben **[V]** darstellen. Zu sehen im folgenden Bild anhand der Darstellung auf der rechten Seite.

10.2 Werkstück Eigenschaften mit Default Mesh-Toleranz

Innerhalb vom Werkstückmanager ist es nun möglich, die Werte für die Mesh-Toleranz

(Sehnentoleranz) als [Default] zu speichern. Die [Defaults] lassen sich sowohl im Modellmanager als auch im Projektbaum sichern.

CAM Navigator					
D) 🔅 💫					
Image: Werkstück (0.0060) Eigenschaften Rohteil (0.0060) Image: Image: Image: Image:	Werkstückparame Merkstückparame Minimum XYZ Maximum XYZ Maximum XYZ	eter peichem Def Werkstück	ouits	0	×
	Toleranzen	0.002	1		
			Abb	rechen	

Hinweis: Beim Speichern erzeugt das System im Installations-Verzeichnis C:\VISI2018R2\User_Profiles\Default\Ger eine Datei mit dem Namen DICT_CamPiece_template_def_u.cfg. Mit dem Befehl **[Standardparameter wiederherstellen]** siehe Menü Bearbeitung-Defaults und Konvertierungen können die Defaults zurückgesetzt werden.

10.3 CAM Projekt Spiegeln

Die neue Version 2018 R2 beinhaltet nun einen komplett erneuerten Spiegelbefehl für Werkzeugwege. Die wichtigste meist geforderte Verbesserung ist dabei die Möglichkeit, die Schnittrichtung bei jeder beliebigen Fräsoperation beizubehalten.

Die neue Funktionalität erlaubt das Erzeugen einer Kopie des aktuellen Projektes und das Spiegeln aller im Projekt enthaltenen Frässtrategien. Ebenso werden alle CAM-Setups (3+2Achsen) und die dazugehörigen Operationen auf die gespiegelte Z-Achsenausrichtung neu berechnet. Die in der Operation vorgegebene Schnittrichtung wird dabei auf Grund von Neuberechnungen der Werkzeugbahnen bei allen Operationen beibehalten.

Der neue Befehl [Projekt spiegeln] steht im Menü [Projekt] zur Verfügung.

CAM Navigator	
0) 🔅 🔨	
Projekt: Projekt1 2379	C1000 EA.
	s 1000_dAx
Projekt zufügen	
	hten <z ebene="">: T42 - Kugelfräser - D:10</z>
👷 🔲 Dupliziere Projekt	Vaveform≻: T8 - Zylinderfräser - D:12
Projekt spiegeln	hnabstand <morphen>: T41 - Kugelfräser - D:8</morphen>
I control of the spreaders	learbeitung <spiral>: T10 - Eckenradiusfräser - D:12 R:2</spiral>
🚯 Aktuelles Projekt berechnen	iral>: T41 - Kugelfräser - D:8
2D Konstanter Ba	II(VU:83.145,VA:-18.567) Innabatand (Konstants: T44 - Kugalitičkar - D:2
SP1 2 Tasche G 0.M	(C:90.000 VA:-39.571)
	Waveform>: T8 - Zylinderfräser - D:12
🚬 🔚 🔤 🖉 🔚 🔚 🔚	18 - Spiralbohrer - D:5.8
🐞 🕽 👘 🗸 🐻 🐻 🐻	esser aufprägen>: T2 - NC-Senker - D:6
Π Bohren <tiefe>: 1</tiefe>	13 - Spiralbohrer - D:5
Bohren < Tiefe>: 1	23 - Gewindebohrer - D:6
SP1 & U (VC:U.UUL	J,YA:U.UUUJ
	oz. 140 - Nugeinaser - D.2 sion5: T45 - Kugelfräser - D:2(B)
Sax (2011/61	T46 - Zvlinderfräser - D:3
📄 📴 SP1_2_Tasche G 0 (V	/C:90.000,VA:-39.571)
📕 🗌 🕹 Konturfräsen < Pro	fil korrigiert Radiuskorr: Ein>: T6 - Zylinderfräser - D:6

Anhand von dem optionalen Icon [Selement kopieren Original beibehalten] kann der Anwender entscheiden, ob das Projekt dupliziert werden soll. Nach der Erzeugung von einem gespiegelten Projekt wird das System einen Kommentar "Spiegeln" für das Projekt und einen Status [

Möchte man nicht das komplette Projekt spiegeln, so kann man wie bereits aus den

vorangegangenen Versionen bekannt, den neuen Befehl [PIGOperation spiegeln] im Menü [Transformiere Operation] aufrufen und so markierte Operationen spiegeln.

CAM	Navigator			
	0) 🌞	Υ.		
•	🖃 🗂 🛛 Projekt: Pro	jekt1 23	379	
	🗎 🖓 🛄 Masch	ine: Alzr	metall_GS1000_5Ax	
203 (***)	E 2º SP1 (G O IVO	gmagazin: Magazini 2:0.000.VA:0.0001	
U	T-4 Z	Konstar	at Schlichten (7 Ebenes: T42 - Kudelfräser -	D:10
£	🗛 👖		Erzeuge Operation	iser - D:8
E		be 🚳	Operation zurücksetzen	usfräser - D:12 R:2
8	i i i i i i i i i i i i i i i i i i i	pir .or	Protokollfenster	
1		- <u></u>	Editiere Werkzeug	iser - D:3
81		è	Werkzeugnarameter erneuern	
12		or 💶		-6
I	(A. B)	or 🍪	Kopieren	
		G 🔯	Operationen gruppieren	
00		81	Sortieren	
		ex 🖓	Editiere Benutzerpriorität	
5		orπ		nderfräser - D:6
~	BZ SP1 U	i 🔺	Werkzeugweg simulieren	oderfräser - D·S
ø	B	or 🚑	Kinematische Simulation	
	— Д В. Д Т.	ok as	Postprozessor •	: T6 - Zylinderfräser - D:6
	1 <u></u> ,		Werkzeugwegreport	
			Transformiere Operation	Operation verschieben
		æ ³	Anzeigen/Ausblenden Werkzeugweg	S Operation rotieren
		8	Löschen	Operation spiegeln

Zusammenfassend hat der neue Spiegel-Befehl die folgenden entscheidenden Vorteile:

- Beibehaltung der Schnittrichtung für alle Operationen
- Beibehaltung der Z-Grenzen zum Beispiel bei der Aufteilung der Operationen in Z-Bereiche
- CAM-Setups und die dazugehörigen Operationen werden anhand der gespiegelten Z-Achsenausrichtung automatisch ausgerichtet, erzeugt und neu berechnet
- Beibehaltung des Bearbeitungsbereiches bei Definition eines Begrenzungsprofiles
- Unterstützung aller Operationen wie auch 5Achsen Simultan
- Unterstützung referenzierter Operationen wie zum Beispiel Restmaterial Schruppen
- Unterstützung von Operationsgruppen, NC-Name und PP-Info werden hierbei zurückgesetzt

Hinweis: Beim Spiegeln werden grundsätzlich keine Duplikate vom Werkstück, Rohteil, Hindernissen, Profilen, Features etc. erzeugt. Für eine Betrachtung und Prüfung der Werkzeugwegbahnen in der Kinematischen Simulation ist es daher erforderlich, die relevanten Geometrieelemente über den CAD-Befehl zu spiegeln.

Für die Neuberechnung der gespiegelten Werkzeugwegbahnen wird das System intern ein gespiegeltes Mesh (Werkstück) mit berücksichtigen.

Achtung: Vom Anwender manuell editierte Werkzeugwegbahnen (Werkzeugweg trimmen, trimmen zwischen Eilgängen, Bearbeitungen verketten etc.) müssen nach dem Spiegeln geprüft und ggf. neu editiert werden.

10.4 Verbesserungen im Werkzeugweg-Report (HTML & XLS Report)

Für den Werkzeugwegreport wurde eine Reihe von Verbesserungen und Erweiterungen eingebaut.

Es gibt neue Variablen, um die ausgegebenen Informationen zu erweitern. **{ToolHldCmp_Holder_Description}**

Diese neue Variable übergibt die Bezeichnung vom Halternamen, siehe folgendes Bild

T	Reschreihung	(D max)	(H max)
	🔒 HSK 63-A D32 L100	63	132
î	O D40 H50	40	50
Ŷ			
₹			
2			

{ToolHIdCmp_Extension_Description}

Diese neue Variable übergibt die Bezeichnung von der Halterverlängerung, siehe folgendes Bild.

Beschreibung		(D max)	(H max)
HSK 63-A D32	L100	63	132
🚹 🚺 D40 H50		40	50
л	_		
			5
<u>₽</u>			
0			
<u> </u>			

{ToolHIdCmp_Adaptor_Description}

Diese neue Variable übergibt die Bezeichnung vom Halteradapter.

Eine weitere sehr nützliche Verbesserung ist die neue Funktion, mit der im Report eine Ansicht aus dem **Snapshot Manager** ausgedruckt werden kann. Die Ansicht muss zuvor mit dem **Snapshot Manager** erzeugt werden, es können ebenfalls Ansichten im **Zeichenblatt** erzeugt und genutzt werden.

Folgende Beispiele zeigen einen neuen verbesserten Werkzeugwegreport:

Anhand der Variablen, siehe Bezeichnungen der Schnappschüsse, werden die Bilder in den Werkzeugwegreport übertragen. Es können somit Ansichten aus dem **Zeichenblatt** und aus der 3D CAM-Umgebung übertragen werden.

	msg(8947) {Prj_Wkf_Path} \ {Prj_Wkf_Name}								
	msg(1124)	msg_(1124) {Prj_Author}						_msg_(8 {Prj_Creat	ionDate}
	msg(8569)		{Prj_W	kf_Path} \					
	msg(2906)	nsg_(2906) {NCM_PostProcessorNam		PostProcessorName}					
	msg(807)		_msg_ (351)	_msg_(168)	_msg_(3465)	_msg_(3465)	_msg_(3455)	_msg_(1422)	_msg_(8568) (D x r)
	OPERATION START	{GEN_OpType}	{Tool_	ng}	r_Description}	on_Description}	e1}	{ToolHld_Presetting}	Tool_CornerRadius}6E
	msg (8565)			Schn	appschuss Manager			2	
	Min	Max		10			bmp 🗸	Sottierung nach Erze	Max
x	{Prj_BB_Xmin}	{Prj_BB_Xmax}			Schnappschüsse				EN_Tp_BB_Xma
Y	{Prj_BB_Ymin}	{Prj_BB_Ymax}			Blatt2	b <u>∟1_1</u>			EN_Tp_BB_Yma
z	{Prj_BB_Zmin}	{Prj_BB_Zmax}		X	I 🗹 📸 Snapsho	oL2_1			EN_Tp_BB_Zma
		(Sn	apshot_	30_1}				{Snapshot_1_1}	

10.5 Aus Profiloperationen wird Boolsche Operationen an Profilen

Mit der VISI 2018 R2 wurden die 4 Befehle der Profiloperationen (Profile vereinen, subtrahieren, schneiden...) zu einem Befehl **[Boolsche Operationen an Profilen]** zusammengefasst und erneuert. Der Befehl wird nun auch in der Standardlizenz (ohne CAM) in den "Modelling Befehlen" siehe Menü **[Draht-Geo]** zur Verfügung stehen.

Durch die Integration des neuen Befehls ergeben sich die folgenden Verbesserungen:

Die 4 Befehle **Vereinen**, **Subtrahieren**, **Schneiden** und **Ausnahme** (Profil ausschließen) lassen sich nun in einem Benutzerinterface auswählen, ebenso steht nun eine Vorschau zur Verfügung.

Die Original-Elemente der gewählten Draht-Geometrie (Bögen, Strecken, Kurven) bleiben nun erhalten und werden somit nicht mehr in einzelne Streckensegmente konvertiert.

11 2D CAM

11.1 Neues Taschenfräsen und Restbearbeitung

Bereits mit VISI2017R2 wurden zwei neue Strategien für VISI-Machining 2,5Achsen integriert.

Taschenfräsen

Restmaterialbearbeitung

Das herkömmliche Taschenfräsen heißt nun **[Taschenfräsen Standard]** und beinhaltet die bis Visi2017R1 gültige Funktionalität.

Taschenfräsen

Die wichtigsten Verbesserungen in dieser Strategie sind folgende Punkte: Optimierte Werkzeugwege an offenen Features

VISI 2017 R1 und frühere Versionen

Ab Visi 2017 R2

Bearbeitung basierend auf Referenzrohteil

Wurde ein **Rohteil** (zum Beispiel DIS) definiert, dann ist das System in der Lage, das Material zu erkennen, das entfernt werden muss und erzeugt die Werkzeugbahnen nur in den Bereichen, in denen auch wirklich Material vorhanden ist. Das Ergebnis ist ein optimierter Werkzeugweg.

Waveform Technologie

Diese neue Technologie gab es bereits für die *HM-Schruppen* Operation. Ab dieser Version steht die Waveform Technologie offiziell für die 2Achs Taschenfräsen Operation zur Verfügung. Ebenso wie für die 3D-Schrupp-Strategie, liegt auch hier das Hauptaugenmerk auf:

HSC-Technologie zur Reduktion der Hauptzeiten und Erhöhung des Zerspanvolumens. Beibehaltung konstanter Vorschübe bei gleichbleibender Mittenspandicke. Abgerundete Werkzeugbahnen, um scharfe Ecken und abrupte Richtungswechsel zu vermeiden, wodurch wiederum die Schnittgeschwindigkeiten nahezu konstant gehalten werden können

Automatisch generierte Zwischenschnitte bei komplexen Features

Bei komplexen Formen generiert das System automatisch zusätzliche Schnitte zwischen den Hauptzustellungen in Z-Richtung, um so weiteres Material zu entfernen, das sonst aufgrund der Z-Zustellung auf dem Bauteil verbleiben würde.

Multi-Prozessmanagement bei der Berechnung von Werkzeugwegen

Verbesserte und erweiterte Verwaltung verschiedener Werkzeugformen

Optimierung des Werkzeugweges durch Auswahl eines Werkstückes

Die Form des Werkzeugweges kann durch die Auswahl eines Werkstückes beeinflusst und optimiert werden, um so auch Kollisionen mit dem Bauteil zu vermeiden

Im Folgenden finden Sie eine Beschreibung zu den wichtigsten Arbeitsgangparametern:

Γ	Bearbeitungsparameter		[Seitliches Aufmaß] und [Aufmaß in Z] Diese Parameter definieren das Aufmaß.
	Seitliches Aufmaß	0.3	
,	Aufmaß in Z	0.1	[Zustellmethode] Definiert die Art der Zustellung, wie zum Beispiel [Waveform] eine HSC-Strategie mit hohem Zerspanvolumen und konstanter
Ż	Zustellmethode	Waveform ~	Werkzeugbeanspruchung. [Spiral Auto] eine klassische Z-Konstante
!!!	Schnittmethode	Gleichlauf 🗸 🗸	Bearbeitungsmethode.
Z	Zustellung	6 单 50 🌲	automatisch eine spiralförmige Seitenzustellung berechnet
	Bearbeitungswinkel (oder Auto)	0	linwaia: Pai dan ahan gananntan Mathadan
			erfolgt die Abarbeitung bei einer geschlossenen
			Tasche von innen nach außen und bei einer
2	Z-Zustellmethode	Konstant Z 🛛 🗸 🗸	offenen Tasche von ausen hach innen.
2	Z-Zustellung	6	[ZigZag] oder [Einweg] die
1	Erste Z-Zustellung		einem [Bearbeitungswinkel] geführt
1	Letzte Z-Zustellung	0	Z-Zustellmethode
2	Zustellung Rückzug	1	"Konstant Z" stellt immer die [Z-Zustellung] zu. "Konstant" stellt in Bezug auf die Featuretiefe
:	% Zustellung	50 🚔	immer konstant zu. Es kann hier sein, dass die tatsächliche Zustellung dann kleiner ist als im
	Erkenne Ebenen		Feld [Z-Zustellung] eingestellt.
			[% Zustellung] [Erkenne Ebenen]
	HSC-Optionen	Ja 🗸 🗸	Diese Parameter verwendet man für die
Ι.	vin In Kontokt Dodine	0	Inseloberflächenbearbeitung, Reduzierung der seitl. Zustellung und man legt fest, ob die
"	min. In Kuniaki naulus	• •	Oberfläche bearbeitet werden soll oder nicht.
L			[HSC-Optionen]
			Ermöglicht ein Verrunden (ausgenommen für
			die Zustellmethode Waveform) des Werkzeugweges für weiche
			Werkzeugbewegungen.
			Der Wert [Min. In-Kontakt Radius] definiert
			Mittelpunktbahn vom berechneten
			Werkzeugweg.

Eintauchtyp	
Verkettungsmethode	Immer Rampe 🛛 🗸 🗸
Einfahren in Tasche	Helix
Winkel	2
Start von Bohrungszentrum	
Eintauchen im Vorschub	
Erzeuge Bohrungsfeature	

Mit der Verkettungsmethode kann man beeinflussen, wie sich das Werkzeug zwischen den Z-Zustellungen verhalten soll. [Immer Rampe], bei jeder Zustellung erfolgt somit ein Rückzug auf die definierte Sicherheitsebene [Auf Tiefe bleiben], in diesem Fall erfolgt kein Rückzug, das Werkzeug verweilt auf der aktuellen Z-Ebene und wird von der aktuellen Z-Position aus eintauchen [Optimiert], nur in Abhängigkeit von der jeweiligen Situation erfolgt ein Rückzug

Folgende Eintauchtypen zum Einfahren in Taschen (Eintauchen in geschlossenen Bereichen) stehen zur Verfügung:

- [Auto] das Eintauchen innerhalb geschlossener Taschen erfolgt automatisch immer mit Helix oder Rampe.
- [Helix] dieser Einfahrtyp wird mit einer Kreisbewegung im "Helixdurchmesser"
- (Helixdurchmesser wird abhängig vom Werkzeugdurchmesser berechnet) ausgeführt. Bei einer Engstelle kann die Zustellung auch mit einer Rampe erfolgen.
- **[Rampe]** das Einfahren in geschlossenen Taschen erfolgt bevorzugt mit einer Rampe.
- **[Eintauchen]** die Eintauchbewegung erfolgt in diesem Fall senkrecht in die Tasche. Der angegebene Eintauchpunkt wird bei diesem Eintauchtyp herangezogen

Erweiterte Einstellungen zum Optimieren der Eintauchbewegung:

- **[Winkel]** in Abhängigkeit vom Werkstückmaterial und Werkzeug kann hier der Eintauchwinkel (Default=2°) beim Eintauchen mit Rampe oder Helix angepasst werden.
- [Start vom Bohrungszentrum] mit dieser Option wird bei kreisförmigen Geometrien in Verbindung mit Eintauchtyp [Eintauchen] der Eintauchpunkt automatisch im Zentrum liegen.
- [Eintauchen im Vorschub] bei einer senkrechten Eintauchbewegung [Eintauchen] erfolgt die komplette Eintauchbewegung im Anfahrvorschub

Ab Version 2018 R2 gibt es nun auch die Möglichkeit, Bohrfeatures zum Vorbohren automatisch erzeugen zu lassen.

[Erzeuge Bohrungsfeature] In Verbindung mit der Eintauchmethode **[Eintauchen]** kann diese Option aktiviert werden, es wird somit automatisch ein Bohrfeature erzeugt.

Restmaterialbearbeitung

Diese Strategie basiert auf der neuen Operation **Taschenfräsen**, deshalb beinhaltet sie die gleichen Verbesserungen, die für das **Taschenfräsen** integriert wurden.

Die "alte" Restmaterialbearbeitung wird durch die neue Restmaterialbearbeitung komplett ersetzt.

Die Erkennung der "Restmaterialbereiche" basiert auf der Auswahl einer oder mehrerer Referenzoperationen.

Für die Berechnung des verbliebenen Materials steht eine neue Engine zur Verfügung, die sowohl von den 3Ax- als auch von den 2Ax-Strategien verwendet wird.

11.2 Neue Operation Anfasen

Es wurde eine Strategie **Anfasen** mit Version 2018 R2 integriert. Die neue Anfasen-Operation bietet eine Vielzahl von Verbesserungen und grundlegende Fehlerbehebungen.

Die wichtigsten Punkte bei der Verbesserung der Qualität sind:

Multiprozessmanagement bei der Berechnung der Werkzeugwege

Verbesserte Qualität der Werkzeugwege, unter anderem die verbesserte Unterstützung von Werkzeugen kleiner D3. Die korrekte Berechnung der Werkzeugwegbahn im Falle einer Überschneidung der Geometrieform, wie anhand der folgenden Situation zu erkennen.

Anfasen VISI 2017 R2 und vorher

Ab VISI 2018 R1

Im Falle einer Überschneidung der Geometrieform wird das System die Berechnung abbrechen und die Meldung "Fasenparameter verursachen eine Überschneidung in Teilbereichen …" im CAM **Protokollfenster** anzeigen. In diesem Fall ist es notwendig, den Operationsparameter **[3D Fase]** zu aktivieren.

Grenzen	The second		Bearbeitungsparameter	
Featuregeometrie	1	4	Aufmaß	0
Bearbeitungsrichtung	Default		Aufmaß in Z	0
Wähle Werkstück	1	B	Fasenparameter	
Wähle Hindernisse	0	2	Flächenkanten	Scheitel 🗸 🗸
Abstand zu Hindernis in XY	2		Fasenmethode	Breite / Winkel 🛛 🗸
			Tiefe / Breite	1 🗘 1 🖨
Max Feature Z / Zusatz Z+	20 0		Winkel	45
Min Feature Z / Zusatz Z-	10 0	A V	3D Fase	
Min Radius	2.5		-	
Maximum Z Absolut	0 ‡		Wegfahrmethode	Axial 🗸 🗸
Offene Kanten überlappen %	100 ≑ 🗖		Radialwert	0
			Axialwert	1
			Wert Voreinstelldurchmesser	0
			Werkzeugwegoffset	Offset 🗸 🚺
			Radiuskorrektur	Aus 🗸
			Schnittmethode	Gleichlauf 🗸 🗸
		8	Z-Zustellmethode	Konstant Z 🗸 🗸
Y	-		Z-Zustellung	2

Intelligente Verwaltung der An- und Abfahrbewegungen

Vorherige VISI Versionen: Das Werkzeug taucht hier direkt auf der Fasen-Geometrie ein.

VISI 2018 R2: Die Anfahrbewegung wird nun automatisch anhand der Geometrie (Werkstück-Feature) angepasst, um die programmierten Einfahrbewegungen beizubehalten

Verbesserte Unterstützung von 3D Hindernissen

Vorherige VISI Versionen:

Ab VISI 2018 R2

Hinweis: Die neue Operation **[Anfasen]** wird die alte Operation Anfasen komplett ersetzen. Beim Laden von einem CAM-Projekt inklusive der Operation Anfasen erstellt mit VISI 2017 R2 oder älter wird das System die alte Operation Anfasen automatisch in die neue Operation Anfasen konvertieren.

11.3 Verbesserungen beim Konturfräsen

Mit 2018 R2 wurde die Option der **Bahnwiederholungen** wieder eingeführt. **Bahnwiederholungen** sind zusätzliche Bahnen nach der letzten Schlichtbahn mit exakt den gleichen Einstellungen. Diese Bahn ergibt die finale Schlichtbahn. Der Sinn und Zweck von Bahnwiederholungen besteht darin, die Fräserabweichung zu kompensieren und somit ein bestmögliches Schlichtresultat, hohe Genauigkeit und Maßhaltigkeit zu erzielen.

Die Optionen für **[Bahnwiederholung]** können in den erweiterten Einstellungen für Werkzeugwegoffset, siehe Einstellungen für **[Bahnen seitlich**], aktiviert werden.

Konturfräsen < Offset Radiusk	orr: Aus> - T7 - Zylinderfrä	ser - D:8	3					×
0								
Grenzen			Bearbeitungsparameter		Anfahre	n/Rückzug		
Featuregeometrie	1	4	Aufmaß	0	Eintauch	methode	Kreisförmig	~ 🔍
Bearbeitungsrichtung	Default ~		Aufmaß in Z	0	Abstand	quer zur Bahn	2	
Werkstücke / Halterabstand	1 5 🖨	do		0	Abstand			
Geometrie erhalten			Werkzeugwegoffset	Profil korrigiert ~	Haum	Bahnen seitlich		×
Hindernis / Abstand	0 2 🔹	2	Radiuskorrektur	Ein 🗸 🛛	hnen seitlich	Bahnen seitlich		
			Bodenbearbeitung	Keine 🗸 🖌	Sichere	Anzahl Bahnen	1	
Max Feature Z / Zusatz Z+	20 0 🐳		Schnittmethode	Gleichlauf 🗸 🗸	Start voi	Zustellung	4	
Min Feature Z / Zusatz Z-	10 0		Z-Zustellmethode	Konstant Z 🗸 🔍		Bearbeitungsmethod	de Bereichsweise	~
Min Radius	2.5		Helixbearbeitung anfügen		Ausfahrr	(Dahari dadahalar		
Maximum Z Absolut			Endkontur		Abstand	Anzahl Bahnen		
Minimum Z Absolut			Z-Zustellung	1.2	Abstand	Nur auf Endtiefe		
Offene Kanten überlappen %	100 🚔 🗖		Erste Z-Zustellung	0	Radius			
Restmaterial			Letzte Z-Zustellung	0	Bogenw		\sim	
Vorheriger Durchmesser	16 🗘 🗖		Spitzenhöhe	0.02				1
Vorheriger Min. Radius	0		HSC-Optionen	Keine 🗸 🔍				
			Min. Radius	0	Rückzı			」
			Zustellung		Verkettu			
			Bearbeitungsmethode	Bereichsweise 🗸 🗸	Verkettu	_		
			Innerhalb Feature	Sicherheitsebene V	Sicherhe			
			Delta Z-Wert	10 📫	Wert Sic	ОК	Abbrechen	
			Zwischen Features	Sicherheitsebene 🗸	Sicherhe	to all all and	2	
			Delta Z-Wert	2	Sichemei	isabsianu	-	
					1			
		ПK			bbrechen			
		UN		-	objechen			

Mit VISI 2018 R2 wird nun **[Helixbearbeitung anfügen]** auch für die seitlichen Bahnen unterstützt. Sobald man die Option **[Helixbearbeitung anfügen]** in Verbindung mit seitlichen Bahnen aktiviert, werden auch die seitlichen Bahnen mit einer helikalen Zustellung berechnet.

Hinweis: Eine helikale Zustellung bei den seitlichen Bahnen wird nur an den Standard-Features ohne Schrägen unterstützt, für komplexe Features gibt es für diesen Fall somit auch keine Unterstützung. Bei Anwendung an offenen Taschen müssen die offenen Seiten als "Geschlossen" definiert werden.

11.4 Migration aus vorherigen Versionen

Mit der ständigen Weiterentwicklung der Software wurde auch die Migration aus vorherigen VISI Versionen mit folgenden Tools ab 2018 R2 verbessert:

Automatische Konvertierung der Restmaterialstrategien, die mit einer älteren Engine berechnet wurden

Manuelle Konvertierung der Standard Taschenfräsen-Operation in die neue Strategie

Restmaterialstrategien mit Version 21 oder neuer erzeugt, werden automatisch in die neue Strategie "Restmaterialbearbeitung" konvertiert, wenn eine alte WKF-Datei ab VISI 2017 R2 geöffnet wird.

Hinweis: Beachten Sie bitte, dass Restmaterialoperationen, mit einer Version < VISI20 erzeugt, nicht konvertiert werden (da diese die ältere Methode, basierend auf "CAM-Restmaterialprofilen" verwenden).

11.5 CAM Attribute Profile Insel-Management

Es ist nun möglich, die Geometrieliste der Inseln, die automatisch vom System erkannt wurden, zu editieren.

Über den Befehl [Editiere Modellgeometrie], zu finden in den Operationsparameter oder direkt im Projektbaum anhand der selektierten Operation, lassen sich die erkannten Inseln entfernen oder zufügen.

11.6 MFR mit neuer Option: Überspringe vorgebohrte Löcher

Mit VISI 2018 R2 wurde für **MFR** eine neue Option eingeführt, die es ermöglicht, die Erkennung an vorgebohrten Platten auszuführen.

Bei über das Mould-Tool erzeugten, vorgebohrten Platten können die Bohrungen beim Ausführen der **MFR** übersprungen werden, so dass diese Bohrungen nicht im Feature-Baum des Modellmanagers erscheinen.

Der neue Befehl **[Überspringe vorgebohrte Löcher]** kann in den CAM-Einstellungen für Automatische Erkennung deaktiviert werden.

Eigenschaften Generelle Einstellungen	Parameter Automatische Erk	kennung	Bohrungserkennung (MFR)	
- Defaults Benutzeroberfläche	Bohrungserkennung (MFR)		Winkel für Konikspitze	90,118,120,124,135,14
- 3 Achsenbearbeitung	Featureerkennung (AFR)		Überspringe vorgebohrte Löcher	
2.5 Ax Bearbeitung Wire FDM	Features für Wire		Vereine aufgetrennte Bohrungen	
Werkzeugwegsimulation	Lineartoleranz	0.001 🚔	Mehrstufige Bohrungen aufsplitten	
- Rohteilanalyse	Winkeltoleranz	0.001	Bevorzuge Erzeugung mehrstufiger Bohrungen	
Automatische Erkennung		Land Land	Bodenradius einschließen	
Compasstechnologie			Max Bohrungsdurchmesser	100
CAM-Nullpunkt Parameter			Max Bohrungsabstand	20
			Min. Featurehöhe	0.5
			Grenzwert für Bohrbearbeitung beidseitig	100
			Minimumwinkel für Bohrung	270
			Konischer Übergangsdurchmesser	50
			CSV Separator	Komma

11.7 Modellmanager mit neuem Befehl: Exportiere Bohrungsfeature im CSV Format.

Mit VISI 2018 R2 wurde ein neuer Befehl eingeführt, der den Export von Bohrungsfeature-Informationen in eine externe "CSV"-Datei ermöglicht. Dieser Befehl steht momentan nur für Feature-Typ "Bohrungen" zur Verfügung.

CAM	Navigator
_	
	🖃 🔐 🔒 Modellmanager
	🖻 🔽 Feature-Richtung [0;0;-1]
<u>يې</u>	⊞ □ ;[Senkung #1 [16;47] (2)
N ¹	
2+	H: [] Bonrung #11 [17.5;47] [4]
	Bohrung #16 [5:15 4] (12)
n [*] t	H
	⊕ <mark> </mark> Bohrung #34 [14;40] (2)
å 1	🖶 🖳 🔲 Bohrung #36 [10.25;47] (5)
Ď	⊕
	H. D. Bonrung #51 [12;47] (4)
-+	
μĴ	
U	
Q	
et	
Q	
00	
W	Exportiere Bohrungen im CSV Format

Die folgende Abbildung zeigt ein Beispiel exportierter Bohrungsinformationen:

Beschreibung	Durchmesser	Tiefe	Gewindedurchmesser	Gewindetiefe	Gewindesteigung	Bohrung	Х	Y	Z
Gewinde	5	17,3	6	13,3	1	Sackloch	-33	-95	-30
Gewinde	5	17,3	6	13,3	1	Sackloch	33	-95	-30
Gewinde	5	17,3	6	13,3	1	Sackloch	-33	-45	-30
Gewinde	5	17,3	6	13,3	1	Sackloch	33	-45	-30
Gewinde	5	17,3	6	13,3	1	Sackloch	-33	45	-30
Gewinde	5	17,3	6	13,3	1	Sackloch	33	45	-30
Gewinde	5	17,3	6	13,3	1	Sackloch	-33	95	-30
Gewinde	5	17,3	6	13,3	1	Sackloch	33	95	-30
Gewinde	5	17,3	6	13,3	1	Sackloch	13	-14	-15
Gewinde	5	17,3	6	13,3	1	Sackloch	-13	14	-15
Gewinde	6,75	20	8	15	1,25	Sackloch	93	137	-7
Gewinde	6,75	20	8	15	1,25	Sackloch	31	137	-7
Gewinde	6,75	20	8	15	1,25	Sackloch	-31	137	-7
Gewinde	6,75	20	8	15	1,25	Sackloch	-93	137	-7

In den **CAM-Einstellungen** für die Automatische Erkennung kann man das Trennzeichen (Default Komma) für das CSV-Format ändern.

<u></u> E	igenschaften	Parameter Automatische Erkennung		Bohrunaserkennuna (MFR)			
	Generelle Einstellungen				pontangeonternang (mini)		
	Defaults Benutzeroberflache		Bohrungserkennung (MFR)		Winkel für Konikspitze	90,118,120,124,135,140	
	2 5 Au Basikabura		Featureerkennung (AFR)		Überspringe vorgebohrte Löcher		
	- Z.5 AX Bearbeitung - Wire EDM		Features für Wire		Vereine aufgetrennte Bohrungen		
	- Werkzeugwegsimulation		Lineartoleranz	0.001 🚔	Mehrstufige Bohrungen aufsplitten		
	- Rohteilanalyse Krümmungsanalyse		Winkeltoleranz	0.001 🚔	Bevorzuge Erzeugung mehrstufiger Bohrungen		
	Automatische Erkennung				Bodenradius einschließen		
	- Compasstechnologie				Max Bohrungsdurchmesser	100	
	CAM-Nullpunkt Parameter				Max Bohrungsabstand	20	
					Min. Featurehöhe	0.5 🚔	
					Grenzwert für Bohrbearbeitung beidseitig	100 🚔	
					Minimumwinkel für Bohrung	270 🚔	
					Konischer Übergangsdurchmesser	50 🚔	
					CSV Trennzeichen	Komma 🗸 🗸	
					Featureerkennung (AFR)	Komma Semikolon –	
		000000			Erweitere auf Z-Oberkante Werkstück	Leerzeichen TAB	

11.8 Compass-Ausführung mit erweiterter Überprüfung der Formeln

Die Ausführung der Compass-Applikation wurde mit einer neuen Option verbessert, die die definierten Formeln in den auszuführenden Konfigurationsdateien (*.cmp) auswertet. Wird ein Fehler erkannt, erscheint eine Dialogbox und es wird ein Logfenster mit den erkannten Fehlern angezeigt (in roter Schrift gekennzeichnet).

Dieses Tool hilft dabei, verdeckte Probleme innerhalb einer existierenden Compasskonfiguration einzugrenzen und zu beheben.

Hinweis: Möchte der Anwender den Dialog nicht mehr angezeigt bekommen, dann kann dies für die aktuelle Sitzung durch Aktivieren der entsprechenden Checkbox ausgeschaltet werden.

	Error					
Erro Plea	r(s) found during Compass execution!	cution report	×			
	Don't ask me anymore OK					
	Analysing features					
	Loop on selected features					
	Get ordered steps to machine					
	COMPASS_LOG: Looking for Tool (ENV_TOOLMATCH=1)				
	<pre>SELECT * FROM Tool WHERE ([Tool_SubType]=100) and ([Tool_Diameter] >= 0.00349900) and ([Tool_Diameter] <= 0.00350000) and ([Tool_UsableLength] >= 0.01749900) and ([Tool_UsableLength] <= 10.00000000)</pre>					
	COMPASS_LOG: Looking for Tool (ENV_TOOLMATCH=1)				
	<pre>SELECT * FROM Tool WHERE ([Tool (([Tool_Function]=2) or ([Tool_ ([Tool_Function]=6) or [Tool_F ([Tool_Diameter] >= 0.00299900) 0.00300000) and ([Tool_UsableLe ([Tool_UsableLength] <= 10.0000</pre>	_SubType]=11) and Function]=3) or 'unction]=7)) and and ([Tool_Diameter] <= ength] >= 0.00000000) and 00000)				
	1 error(s) in file:Taschenfraes	en_Jona_DM0_bis_DM41.cmp				
	Please check: V2AX_Stepover -					
	COMPASS_LOG: Looking for Tool (ENV_TOOLMATCH=1)				
	SELECT * FROM Tool WHERE ([Tool ([Tool Diameterl >= 0.00399900)	_SubType]=19) and and ([Tool Diameterl <=	~			

12 3D CAM

12.1 3D Geometrievorbereitung und Aufbereitung

Die Vorbereitung des Werkstückes und Verwaltung für das CAM-Modul wurden verbessert, um die Berechnungen zuverlässiger, schneller und stabiler zu gestalten. Damit wurde bereits mit der Version 2017 R1 begonnen und in den letzten Releases weitergeführt.

Die Kernpunkte dabei sind:

Höhere Zuverlässigkeit & Stabilität: Der Prozess der Modellvorbereitung und das Vernetzen wurden überarbeitet und verbessert, um robuster und zuverlässiger zu werden (der Prozess war in der Vergangenheit fehlerbehaftet).

Schneller: Der verbesserte Prozess zur Geometrievorbereitung wurde beschleunigt, vor allem beim Vernetzen. Im Schnitt wurden die Zeiten für die Mesh-Berechnung um bis zu 50% reduziert.

Nachfolgend einige Vergleichsresultate zwischen den Versionen 2017 R2 und 2018 R1:

Beispiel 1:

VISI 2017 R2

Process Manager							
Process Name	Action	Start time	End time	Progress	Status		
🔵 Meshing Piece	* * * * * * *	12:26:02	12:26:18	00:00:16	Finished		
🔵 Organising mesh data	* *	12:26:18	12:26:21	00:00:03	Finished		
🛑 Roughing <spiral> v24UPD</spiral>	Toolpath computation in progress	12:26:21		1%	Running		

Ab VISI 2018 R1

Process Manager						
Process Name	Action	Start time	End time	Progress	Status	
🔵 Meshing Piece	* *	12:24:53	12:24:58	00:00:04	Finished	
Organising mesh data	*	12:24:58	12:24:59	00:00:01	Finished	
😑 Roughing <spiral> v24UPD</spiral>	Toolpath computation in progress	12:24:59		39%	Running	

Beispiel 2:

VISI 2017 R2

Process Manager							
Process Name	Action	Start time	End time	Progress	Status		
\varTheta Meshing (2147483654)	* * * * *	12:32:34	12:33:16	00:00:42	Failed		
🔴 Organising mesh data					Failed		
🛑 Roughing <spiral> 5:24min</spiral>					Failed		
VISI 2018 R1

Process Manager									
Process Name Action Start time End time Progress Status									
🔵 Meshing (2147483654)	leshing (2147483654) *****			00:00:10	Finished				
🔵 Organising mesh data	*	12:33:40	12:33:41	00:00:01	Finished				
😑 Roughing <spiral> 5:24min</spiral>	Toolpath computation in progress	12:33:41		32%	Running				

Beispiel 3:

VISI 2017 R2

Process Manager								
Process Name Action Start time End time Progress Status								
😑 Dynamic incremental stock	Saving residual stock	14:08:03			Running			
Meshing (2147483652)	*	14:08:04	14:08:54	00:00:50	Finished			
🔵 Organising mesh data	* * *	14:08:54	14:09:00	00:00:06	Finished			
Roughing <spiral> v24</spiral>					Initialised			

VISI 2018 R1

Process Manager							
Process Name	Action	Start time	End time	Progress	Status		
Dynamic incremental stock	Saving residual stock	13:57:44			Running		
Meshing (2147483652)	* * * * *	13:57:45	13:57:55	00:00:10	Finished		
🔵 Organising mesh data	*	13:57:55	13:57:57	00:00:02	Finished		
Roughing <spiral> v24</spiral>					Initialised		

12.2 Verbesserung Restmaterial Schruppen basierend auf Referenzoperationen

Ab Version 2018 R2 können nun **alle** Operationen unter anderem 2.5Achs und 5Achs Simultan Operationen als Referenz für die Berechnung vom Restmaterial herangezogen werden.

Tipp: Aufgrund vom bereits in VISI 2017 R2 geänderten Berechnungsalgorithmus für die Erkennung vom Restmaterial wird empfohlen, die Standard-Genauigkeit bzw. Auflösung kleiner zu setzen. Für die Berechnung von 0.01 bis 0.2, in Abhängigkeit vom eingesetzten Werkzeugdurchmesser, konnten wir bei unseren internen Tests gute Ergebnisse erzielen. Der gesetzte Standardwert von 0.5 bei der Auflösung Rohteil (Referenzoperationen) bzw. 1 bei der Genauigkeit (Dynamisches Restmodell) ist in den meisten Fällen zu grob!

Hinweis: Der Wert der Auflösung bzw. Genauigkeit definiert eine Sehnentoleranz für die Berechnung vom Restmodell (Mesh).

12.3 Verbesserungen bei der Operation Schruppen

Neuer Bearbeitungsparameter Automatisches Glätten

Bereits mit VISI 2017 R2 wurde dieser neue Parameter integriert, um eine automatische Glättung scharfer Ecken im Werkzeugweg zu aktivieren / deaktivieren. Die Berechnungsroutine weist immer eine kleine Glättung an allen scharfen Ecken zu, auch wenn der Glättungsradius=0 gesetzt wird. Dieses Verhalten der Engine hat in bestimmten Situationen unerwünschte Ergebnisse geliefert.

Der Parameter **[Automatisches Glätten]** kann das Glätten (HSC-Eckenabrunden) komplett aus- bzw. einschalten.

Bearbeitungsparameter		Anfahren/Rückzug	
Aufmaß	0.1	Einfahrmethode	Rampe
Methode Schnittrichtung	Gleichlauf 🗸 🗸	Einfahrabstand	2
Bearbeitungsmethode	Spiral 🗸	Seitlicher Abstand	0
Erzwinge geschlossene Bearbeitung		Winkel	2
Zustellung	3 🔷 75 🌲 %		
Spitzenhöhe	0.3	Rückzug	
Foster - Michael Debugh should		Eilgangmethode	Kürzester Weg
Erster seitlicher Bannabstand		Sicherheitsebene	142.9338 🛛 📩
Bearbeitungsmodus	X parallel	Rückzugsabstand	2
Winkel	0 🗘 💦	Mindestrijekaugesbetand	5
		Minuestruckzugsabstanu	
Zustellmethode	Konstant 🗸 🦯	Glättungsradius in Eilgangbewegung	1
Bearbeite ebene Flächen		Methode Rückzugsvorschub	Eilgang
Z-Zustellung	1.5 🚔		
Glättungsradius	1		
Automatisches Glätten			1
Vermeide kleine Taschen			
Minimum Taschenbreite	20 😫 🗹		
Werkzeughalter-Parameter			
Halterabstand	2 🚽 🗹		
Spiel Schaft	0		

Soll das Werkzeug z.B. innerhalb schmaler, tiefer Kavitäten eintauchen, dann kann mit Glättung eventuell der Boden der Tasche nicht erreicht werden. Im folgenden Bild dargestellt:

Wird die Option dagegen AUS geschaltet, dann erfolgt keine Glättung, und das Werkzeug kann bis zum Boden der Tasche bearbeiten. Im folgenden Bild dargestellt.

Neuer Anfahrparameter – Seitlicher Abstand

Mit der VISI 2018 R2 wurde ein neuer Anfahrparameter **[Seitlicher Abstand]** eingebaut, mit dem ein zusätzlicher horizontaler Abstand zwischen Werkzeug und Rohteil definiert werden kann.

Durch die Angabe eines Abstandes (mm) kann eine sichere horizontale Anfahrbewegung an die Rohteilgeometrie berechnet werden, eine vertikale Anfahrbewegung mit Kontakt Werkzeug-Rohteil kann somit vermieden werden.

Bearbeitungsparameter		Anfahren/Rückzug	
Aufmaß	0	Einfahrmethode	Rampe 🗸
Methode Schnittrichtung	Gleichlauf 🗸 🗸	Einfahrabstand	6
Bearbeitungsmethode	Spiral 🗸	Seitlicher Abstand	2
Erzwinge geschlossene Bearbeitung		Winkel	2
Zustellung	7.5 🗘 75 🐳 %		
Spitzenhöhe	0.2	Rückzug	
Erster epitlicher Rohnsbetand		Eilgangmethode	Sicherheitsebene 🗸
Erster settioner bannabstand		Sicherheitsebene	60 📩
Bearbeitungsmodus	X parallel V	Bückzugsabstand	10
Winkel	0 🛟 🔏		
		Mindestruckzugsabstand	U v
Zustellmethode	Konstant 🗸 👌	Glättungsradius in Eilgangbewegung	0
Bearbeite ebene Flächen		Methode Rückzugsvorschub	Eilgang 🗸 🗸
Z-Zustellung	10		
Glättungsradius	0		
Automatisches Glätten			
Vermeide kleine Taschen			
Minimum Taschenbreite	20		

Anfahren von außen seitlicher Abstand=0

seitlicher Abstand=2mm

12.4 3Ax Konstant Z Schlichten – Angepasste Z-Zustellung

Beginnend mit VISI 2018 R2 steht die Methode der angepassten Z-Zustellung offiziell zur Verfügung

Die Berechnungsroutine wurde komplett neu geschrieben und ist nun in der Lage, die Verteilung der Z-Ebenen korrekt zu berechnen. Die Verwaltung der variablen Z-Schnitte für separate Bearbeitungsbereiche in einem Werkstück wurde wesentlich verbessert. Zum besseren Verständnis schauen Sie sich bitte die folgenden Bilder an:

Mit der Zustellmethode **[Angepasst]** werden die erweiterten Parameter **[Minimum Zustellung]** und **[Theoretische Rauhtiefe]** freigeschaltet.

Bearbeitungsparameter			Anfahren/Rückzug	
Aufmaß	0		Einfahrmethode	Radial 🗸
Aufmaß in Z	0		Einfahrabstand	2
			Einfahrradius	1 🚔
Methode Schnittrichtung	Gleichlauf ~		Min Einfahrradius	0.8 🚔
Werkzeugwegmethode	Helix ~		Überlappung Ein-/Ausfahren	0
Zustellmethode	Angepasst	\+	Winkel	2
7.7ustellung	0.5		Wähle Zustellpunkte	0 •
Minimum Zustellung			Kantenschutz	1
Theoretische Raubtiefe				
			Rückzug	
Glattungsradius			Eilgangmethode	Sicherheitsebene 🗸
Wegverlängerung	0		Sicherheitsebene	65 🍾
Werkzeughalter-Parameter			Rückzugsabstand	2
Halterabstand	2 😫 🗹		Mindestrückzugsabstand	0
Spiel Schaft	0		Glättungsradius in Eilgangbewegung	0
			Methode Rückzugsvorschub	Eilgang 🗸 🗸
			ព	
Zustellung			N/K	1
HSC-Funktionen	Aus 🗸		YA	
Bearbeitungsmethode	Bereichsweise 🗸 🗸		₩ <u></u>	
Min. Kontaktabstand	8		1	
Bereichsweise ab	1			

Hinweis: Bitte beachten Sie, dass die Werte für Rauhtiefe und Minimum Zustellung in Abhängigkeit von der Bearbeitungstoleranz **[Sehnentoleranz]** gesetzt werden sollten. Die Bearbeitungstoleranz sollte somit kleiner sein, als die Werte für die Rauhtiefe und Minimum Zustellung.

12.5 3Ax Ebene Bereiche Bearbeitung – Glättung von Zigzag-Werkzeugwegen

Mit VISI 2018 R2 gibt es eine neue Option, die es erlaubt, die Ecken in einem zigzag-förmigen Werkzeugweg zu glätten (Auswahl Methode **Zigzag**). Wird diese Option aktiviert, kann mit einem höheren Vorschub gefahren werden und somit der Fräsprozess auf der Maschine beschleunigt werden.

Schauen Sie dazu folgendes Beispiel an:

12.6 3Ax Leitkurvenfräsen und Spiral-Option

Mit Version VISI 2018 R2 wurde die Strategie **Leitkurvenfräsen** überarbeitet, und bietet nun eine bessere Kontrolle über die Form des Werkzeugweges.

Die Werkzeugwegmethoden wurden erweitert mit den 3 folgenden spezifischen Methoden:

- Parallel
- Senkrecht

oonoonangoparamotor	
Aufmaß	0
Aufmaß in Z	0
Bearbeitungsmethode	Zigzag 🗸 🗸
Werkzeugwegmethode	Senkrecht ~
Zustellung	Parallel
Theoretische Rauhtiefe	Spiral
Wegverlängerung	1
Rahn auf Kurven ausführen	

• Spiral (Neu ab 2018 R2)

Wird die neue Methode *Spiral* selektiert, wird eine neue Option freigegeben, die es erlaubt, die Bahnen auf den Leitkurven auszuführen, um sicherzustellen, dass der komplette Bearbeitungsbereich erfasst wird.

Das Parameterfenster wurde entsprechend erneuert:

Bearbeitungsmethode	Zigzag)	~	
Werkzeugwegmethode	Spiral		~	
Zustellung	2	-		
Theoretische Rauhtiefe	0.2			
Wegverlängerung	1	A T		
Bahn auf Kurven ausführen				

12.7 Neuer Parameter "Spiel Schaft"

Bereits mit der VISI 2017 R2 wurde dieser neue Parameter bei den neueren 3Achs Strategien eingeführt. Damit kann der zulässige Abstand zwischen Werkzeugschaft und Modell gesteuert werden.

Der neue Operationsparameter **[Spiel Schaft]** wird nur dann zur Verfügung stehen, wenn bei der Werkzeugdefinition der Wert für den Schaftdurchmesser (SD) > WZ Durchmesser (D) ist.

Zustellmethode	Konstant	Fräsertyp 🛛
Z-Zustellung Minimum Zustellung Theoretische Rauhtiefe Glättungsradius Wegverlängerung Werkzeughalter-Paramet	1 0.2 0 0 •	Subtyp Eckenradiusfräser Werkzeugmaterial VHM Bearbeitungsmodus Schlichten WZ Durchmesser (D) 4 Schaftdurchmesser (SD) 6
Halterabstand	2 😫 🗹	
Spiel Schaft		Glättungsradius in Eilgangbewegung 0
Zustellung HSC-Funktionen Bearbeitungsmethode Min. Kontaktabstand Bereichsweise ab	Aus Bereichsweise 8 1 1	
		Abbrechen

12.8 System prüft nun die angegebene Bearbeitungstoleranz (Sehnentoleranz)

Das System wird nun die angegebene **Bearbeitungstoleranz** für die jeweilige 3-Achs Strategie in Abhängigkeit von der **Werkstücktoleranz** (Meshtoleranz) überprüfen und einen Hinweis "Sehnentoleranz Außerhalb Bereich [Wert>...]" anzeigen, sobald man eine Bearbeitungstoleranz kleiner / gleich der Meshtoleranz verwenden möchte.

Toleranzen	Werkstückparameter ×
Parameter Bearbeitungsgenauigkeit Sehnentoleranz	la 🖨 🗎
An gerades Segment and Estite (, Bushis)	Information Typ Werkstück 🔗
	Referenzname
	Minimum X,Y,Z 59.4575 15.7361 -8.898
	Maximum X,Y,Z 107.4575 25.7361 46.102
X	Sehnentoleranz 0.006 😴
OK Abbrechen	OK Abbrechen

13 VISI Electrode Machining

Dieses neue Modul wurde bereits mit VISI 2017 R2 entwickelt und eingeführt. Mit der neuen Elektrodenbearbeitung kommt man beim Programmieren von Elektroden einfacher und schneller zum Ziel. Der bisher durchgängig manuelle Prozess wurde mit der Elektrodenbearbeitung automatisiert. Bereits im VISI Elektrodenmanager definierte Daten werden automatisch an den CAM-Navigator übergeben. Die Elektrodenbearbeitung verarbeitet einige relevante Daten, die bei der Erzeugung der Elektrode definiert werden. Somit werden weitgehend Fehler vermieden, die auf dem Weg vom "Design zur Herstellung" auftreten können. So können zum Beispiel für die Bearbeitung notwendige und relevante Elektrodendaten sofort übertragen werden.

Auch hier steht die Zeiteinsparung beim Bearbeitungsprozess einer Elektrode im Vordergrund.

Aus dem **Elektrodenmanager** heraus kann das neue Modul über das Kontextmenü einer Elektrode aufgerufen werden.

EDM Manager	
Projekte Projekte Werkz1234 Werkz123 Werkz123	Elektroden durch Drag <u>D</u> rop hinzufügen Elektroden über Punktset hinzufügen Wähle neue Elektrode DRAG AND DROP Spiegeln Halter aus Bibliothek Lösche Halter
	Elektrodenbearbeitung
	Kollisionsprüfung Simulation

Die Hauptfunktionen, die mit dem neuen Befehl [Elektrodenbearbeitung] ausgeführt werden, sind:

- Übergabe Werkstückmaterial
- Erzeugung CAM Werkstück
- Erzeugung CAM Rohteil
- Erzeugung CAM Hindernis (Elektrodenhalter)
- Erzeugung CAM Projekt Fräsen
- Ausführung vordefinierter Bearbeitungsvorlagen

Es stehen verschiedene benutzerdefinierbare Einstellungen zur Verfügung, um die Vorbereitung des CAM – Projekts Fräsen zu unterstützen. Die wichtigsten Einstellungen sind:

- Benutzerdefinierter Projektname
- Spezielle Maschinenauswahl
- Spezielle Werkzeugbibliothek
- Benutzerdefiniertes "Werkstückmaterial"
- Spezielle Ablage für Bearbeitungsvorlagen
- Spezielle Werkstück-Meshtoleranz

• Benutzerdefinierter Referenznullpunkt

Die neuen Default-Einstellungen für die automatische Elektrodenbearbeitung findet man in den Einstellungen für Elektrode siehe [Elektrodeneinstellungen].

Setz	e Elektrodenparameter							
	Setze Elektrodennarameter							
	Elektrodenerusiterung	Material	Graphit	Graphit				
	Debteit Allegenein	material		enoprin				
	Rontell Aligemein	Material	Kupfer	Kupfer				
	Rohteilnamen							
	Rohteilmaterialien	Material	Graphit (L)					
	Rohteilkennzeichnungen							
	- Oberflächengualität Rohteil	Material	Graphit (M)					
	- Halter Allgemein							
	Halternamen	Material	Graphit (H)					
	- Halterlieferanten					—		
	Haltercodes	Material	Kupfer-Wolfram					
	Halterkennzeichnungen		0.00					
	EDM mm	Material	Silber-Wolfram					
	EDM inch	Manadat		Graehit				
	EDM Allessein	Material		Graphic				
	EDM Aligemein	ki starist						
	EDM Spulmodus	material						
	EDM Auslenkung	Material						
	- EDM Untermaßmodell	matchar						
	Setze Elektrodenparameter	1						2
	Setze Elektrodenparameter	CAM	Projekteinstellungen					
	Elektrodenerweiterung		repettoringen		· · · · · ·			
	Rohteil Allgemein	Projekt	name		\$(name)-\$(width)x\$(depth)x\$(totalheight)		
	Rohteilnamen	Evistics	undes Dreiekt wieder ve					
	Rohteilmaterialien	Exister	endes Frojekt wieder ve	awenden				
	Rohteilkennzeichnungen	Refere	nzarbeitsebene Projekt		\checkmark			
	Oberflächenqualität Rohteil	Hinder	nis zufügen					
	Halter Allgemein	Autom	- ht Noubereebnung der (Destationan				
	Halternamen	Autom	at, requerecting der t	perationen				
	Halterlieferanten	Standa	ardmaschine		3ax_standa	ard	G	
	Haltercodes				1			
		Werkz	eugmagazin		Elektroden		G	
<	EDM mm	<u>8</u>			-			
	EDM inch	Vorlage	enordner		CAM Temp	lates\V2017R2\automatic elec	10	
	EDM Allgemein	li			_		-	
	EDM Spülmodus	Aktivie	re Minimum Z					
_	EDM Auslenkung	Meshto	oleranz Werkstück		0.002			
	EDM Untermaßmodell				1.1			
	EDM Untermaß	CAM	Rohteileinstellungen					
	EDM Deadline	CAM I			Lucin -			
		Hohtei Meshta	ltyp oleranz Rohteil		0.05			
	Zujindrisches Rohteil - Abmess	Offeet	~					
	- Env Allgemein	Ullset,	<u>^1</u>					
	- Epx Export	Offset 2	Z		1			
	Epx Multiblock	ŝ			-			
	- Konfiguration Bohteilmenü	Frabe						
	Einstellungen Elektrodenbeart							
		Nullo	unkteinstellungen					
		Mulle	akt aktiviaran					
		Nulipu	nkt aktivieren					
		Nullpur	nktname Postfix		- AEM			
	< >>	22						
			OK			Abbrechen		

Das neue Modul für die Elektrodenbearbeitung ermöglicht für den Formenbauer eine wesentliche Zeiteinsparung. Die Fehlerquoten bei der Übergabe der Elektrodendaten zum VISI Machining-Modul werden durch die Automation minimiert.

Hinweis: Auf unserer Homepage <u>https://www.mecadat.de/support-service/tools-und-applikationen/</u> finden Sie ein Schulungspaket "VISI Electrode Machining" mit einer weiteren detaillierterer Dokumentation.

Beschreibung / Workflow Elektrodenbearbeitung:

14 ISO- und 5Achs Simultan Bearbeitung

Die 5Ax Berechnungs-Engine wurde aktualisiert (VISI 2017-12), um zuverlässigere 5Ax-Strategien zu erzeugen. Diese neue Engine bietet eine Reihe neuer Funktionalitäten und viele Bugfixings.

Im Folgenden finden Sie die wichtigsten Verbesserungen:

Mehrfachauswahl bei den Bearbeitungsflächen hinsichtlich der Bearbeitungsstrategie **[Flowline]**

Es können nun mehrere Bearbeitungsflächen für die Berechnung herangezogen werden. Es wird hierbei für jede gewählte Fläche ein eigener Werkzeugweg entlang der ISO-Kurven berechnet.

ISO Fräsen - T44 - Kugelfräser - D:2		
Flächenkontakt-Bahnen WZ-Achsenführung Kollisionskontroll Berechnung baserend auf Flächen Muster	e Link	Schruppen Zusatz
Flowline	\sim	Wähle Führungsflächen
Richtung Längs	~	R 🖞 😥 Flächen
Bearbeitungsflächen Aufmaß auf 0		ID Beschreibung 892 Fläche 288 Fläche
Bereich Bahnerzeugung Komplett, vermeide Randprobleme	~	
Runde Edien Erweitern / Kürzen Winkelbereiche	2D Begre	
Sortierung		
Dusteinantung umkehren Bearbeitungsmethode		
Schnittsortierung Standard		
Startpunkt Bearbeitung	Bahnen	OK Abbrechen

Wälzfräsen mit zusätzlicher Werkzeugachsenkontrolle, Ausgabeformat 3Achs oder 4Achs.

Das Wälzfräsen kann nun auch für 3Achsen Maschinen oder 4Achsen Maschinen genutzt werden, um ggf. unnötige Rotationsbewegungen der Schwenk- und Drehachse zu vermeiden. Im Fenster WZ-Achsenführung kann der Anwender nun das gewünschte Ausgabeformat (3-, 4- oder 5Achsen) aktivieren.

Flächenkontakt-Bahnen	Werkzeugachsenkontrolle	Kollisionsvermeidung	Link	Mehrfachschnitte	Ecken	Zusatz
- Werkzeugachsenkontr Ausgabeformat	olle	~	7			
Bearbeitungsrichtung	3-Achsen 4 Achsig					

Wälzfräsen mit neuer Strategie [Normal zur Führungskurve]

Mit dieser Strategie wird beim Wälzfräsen in Abhängigkeit der gewählten Führungskurve **[Führe WZ an Untere Kurve]** oder **[... Obere Kurve]** der Führungswinkel entlang der Werkzeugbahn senkrecht zur Kurve (Flächenkanten) erfolgen.

ächenkontakt-Bahnen	Werkzeugachsenkontrolle	Kollisionsver	meidung Link	Mehrfachschnitte	Ecken	Zusatz	
erechnung basierend	Wälzfräsen	`	~				
Geometrie							
Wälzflächen		Aufmaß	0				
Bodenfläche	Mir	ndestabstand	0.1				
Werkzeug auf Boden	Fallen lassen und Zurückz	iehen 🗸					
Kipplinien							
Bezugskurve	Oberer L	Interer	Tauschen				
Bearbeitung							
Seite	Automatisch	~					
Richtung	Gleichlauf	~					
Führe WZ an	Untere Kurve	~					
Startpunkt							
Тур	Automatisch	~					
Oberflächenqualität							
	Se	hnentoleranz	0.01				
		Max. Abstand	0.5				
Erweiterte Eintellunger	n						
Strategie	Normal zur Führungskurve	• ×					
	Synk. mit Kipplinien Synk. mit Kurven						
Verlängerung	Kürzester Abstand						
	Synk, mit Hauptrichtung						
	Verlängerun	ig am Anfang	0				
	Verlägger	una am Endo					
	venanger	ang am chue					

Glättung der Schwenk- und Rotationsachse

Bezogen auf die WZ-Achsenführung gibt es nun eine Möglichkeit, eine **[Glättung]** (Smoothing) der Schwenk- und Rotationsachse auszuführen. Ruckartige Bewegungen werden somit eliminiert. Mit der Glättung wird die Dynamik der Rotationsachse und der Schwenkachse optimiert, was zu einer flüssigeren Fräsbewegung und einer verbesserten Oberflächenqualität führt.

5ax <parallele schnitte=""></parallele>	-> - T2 - Kugelfräser - D:6	? ×
Flächenkontakt-Bahnen	WZ-Achsenführung Kollisionskontrolle Link Schruppen Zusatz	
Ausgabe Format:	5 Achsen 🗸	
Max. Winkelschritt	3	
Werkzeugachse wird	relativ zur Bahnrichtung gekippt 🗸 🗸	
	🔳 Glättung Werkzeugachse ? 🗙	1
	Glättungstyp Relativ zur Rotationsachse 🗸 🗸	
	Rotary axis Z Achse 🗸	
Führungswinkel	Min. Max.	
Seitlicher Kippwinkel	Kippwinkel -10 10	
Seitliche Kinnmethode	Senkrecht zur Fräsbahn	
WZ-Kontaktpunk Aut	utomatisch V	
	OK Abbrechen	
Smoothing	ng Begrenzung	
Gangige Richtung	ig war allen Konturen	
	OK Abbrechen Übernehmen	Hilfe

Allmähliche Winkeländerung des Anstellwinkels bei Methode [Werkzeugachse wird angestellt zu einer Achse]

Dieses Feature erlaubt mehr Kontrolle über den Anstellwinkel während der Bearbeitung. Ein Anwendungsfall für diese Option wäre z.B. eine Schlichtbearbeitung für eine Turbinenschaufel. Der Kippwinkel relativ zur fixen Rotationsachse kann so gesteuert werden. Der Anwender definiert Start- und Endwinkel. Entlang der Werkzeugwegbahn ändert das Werkzeug allmählich seinen Kippwinkel zwischen den Winkelwerten für Start- und Endwinkel. Damit wird sichergestellt, dass das Werkzeug vom Grund der Turbinenschaufel weg bleibt.

lächenkontakt-Bahnen	WZ-Achsenführung	Kollisionskontrolle	Link	Schruppen	7usatz	
Ausgabe Format:	5 Achsen	~	Link	benappen	Luburt	
Max. Winkelschritt	3					
Werkzeugachse wird	angestellt zu einer A	chse	\sim			
	Z-Achse		~			
Kippwinkel	10	WZ Achse tr	ifft Kippi	achse		
Kippwinkel	10 45 0	UWZ Achse tr	ifft Kippi	achse		
Kippwinkel	10 45 0	□ WZ Achse tr	ifft Kipp:	achse		
Kippwinkel To Rotationswinkel	10 45 0	WZ Achse tr	ifft Kippi	achse		
Kippwinkel To Rotationswinkel	10 45 0	□ WZ Achse tr □ Kippen beibe	ifft Kippi	achse		

Neue Verkettung (Link) – [Blend Spline zum Sicherheitsbereich]

Damit ist es nun möglich, zwei Konturen mit einer Splinebewegung über den Sicherheitsbereich miteinander zu verketten.

Die wichtigsten Vorteile hierbei sind:

- Wird eine Kollision erkannt, dann wird die Verkettungsbewegung (Blend Spline) so erweitert, dass die Hauptform dabei beibehalten wird und eine weiche Zustellung garantiert wird.
- Die Maße der Splinebewegung werden durch eine erweiterte Begrenzung des Bauteils begrenzt.

Der Sicherheitsabstand zum Abheben wird dabei immer befolgt.

5ax < Abwälzen> -	T2 - Kugelfräser - D:6	? ×
	weiner weiner der sternen in Kellisiener erweinigen	Link Malada da June Zunta
Einfahrt/Ausfahrt	nen werkzeugachsenkontrolle kollisionsvermeldung	
Erstes Anfahren	von Sicherheitsbereich $$	ohne Anfahrt V
Letztes Ausfahren	Rückzug zum Sicherheitsbereich $$	ohne Abfahrt V
	Starte von Ausgangsposition	Rückzug zur Ausgangsposition
Lücken in Längsric	htung	
Kleine Lücken	Direkt V	ohne An-/Abfahrt V
Große Lücken	Sicherheits Blend Spline	ohne An-/Abfahrt V
Kleine Lücken	20	0 Oals Wert
Zustellung zwische	en Bahnen	
Kleine Zustellung	Direkt ~	ohne An-/Abfahrt 🗸
Große Zustellung	Sicherheits Blend Spline	ohne An-/Abfahrt
Kleine Zustellungen	110 (als % der Querzustellung	0 O als Wert
Verknüpfungen zv	vischen Ebenen	
Kleine Zustellung	Direkt 🗸	ohne An-/Abfahrt 🗸 🗸
Große Zustellung	Sicherheits Blend Spline \checkmark	ohne An-/Abfahrt 🗸 🗸
Kleine Zustellung a	Direkt Folge Flächen Verbindungskurve Rückzug zum Anfahrabstand	
Rückzüge	Rückzug zum Gesamtanfahrabstand Rückzug zum Sicherheitsbereich Dückzug auf inkr. Sicherheitsehene	
	Sicherheits Blend Spline	
		OK Abbrechen Übernehmen Hilfe

Neue An-Abfahrbewegung [Automatischer Bogen]

Die An- und Abfahrbewegungen verbinden die Konturen über einen vom Anwender definierbaren Bogenradius und Min. Bogenradius zu einer tangentialen Verkettungsbewegung. Es sollte hierbei beachtet werden, die Verkettung auch in Kombination mit einer Kollisionsprüfung auszuführen.

Der Automatik-Bogen besteht aus 2 Splines. Der erste Spline verlässt die Fläche tangential in Richtung der Flächennormale, ähnlich dem tangentialen Bogen. Der zweite Spline verbindet Eintauch- oder Rückzugsbewegung tangential unter Beachtung der Werkzeugachsenorientierung.

An-/Abfahrt	?	×
Anfahrt Abfahrt		
Typ Automatischer Bogen V Typ Tangentialer Bogen	~	
WZ Ausrichtung Fest	~	
Bogenradius 3		
Min. Bogenradius 1 Breite	20	
Länge	20	
Bogenwinkel	90	
Kreichesendurchmesser / [
WZ Durchm. in %	200	
Höhe	0	
Vorschub %	100	
	OK Abb	rechen

Neue An-Abfahrbewegung [Umgekehrte orthogonale Linie]

Mit Angabe einer **[Länge]** erzeugt das System eine in WZ-Achsrichtung orientierte umgekehrte senkrechte An- und/oder Abfahrbewegung. Bei Angabe von einem **[Radius]**, wird diese Bewegung tangential erfolgen. Diese neue An-Abfahrbewegung kann auch dabei helfen, eine Bewegung in Richtung Werkstück/Hindernisse zu vermeiden.

I An-/Abfahrt	? ×
Anfahrt Typ Ungekehrte orthogonale Linie Tangentialer Bogen WZ Ausrichti Rückwärts Tang. Bogen Wzrtikal Tang. Bogen Horizontal Tang. Bogen Radius Senkrechter Bogen Radius Tangentiale Linie Rückwärts Tang. Linie Länge Ungekehrte orthogonale Linie Vertikale Profilrampe Positionslinie Automatischer Bogen Höhe O	Abfahrt Typ Umgekehrte orthogonale Linie v WZ Ausrichtung Fest v Radius 0 Länge 20
Vorschub %	Vorschub %
	OK Abbrechen

5Achsen Bohren mit neuer Option [Bohrtiefe vom ersten Kontaktpunkt berechnen]

Wird diese Option aktiviert, dann findet das System den ersten Kontaktpunkt vom Werkzeug am Werkstück und verwendet diesen als Startpunkt für die Berechnung der Bohroperation. Mit dieser Option kann somit eine Eilgangbewegung in das Werkstück vermieden werden.

Flächenkontakt-Bahnen Kollisionskontrolle Link Berechnung basierend auf Bohren Pattern	
Auf Fläche ○ Linien ● Punkte Bearbeitungsflächen Bohrungstiefe 10 Ø Bohrtiefe vom ersten Kontaktpunkt berechnen	
	Surface quality Sehnentoleranz 0.01

15 Kinematische Simulation

Die kinematische Simulation und der 5Achs Postprozessor wurden überarbeitet, um die Funktionalität zu verbessern. Verschiedene Bugfixings wurden integriert.

Die wichtigsten Punkte sind:

- RTCP Management in Simulation und Postprozessor
- Kürzester Weg Simulation für die Rotationsachse (C-Achse)

Î 🛛

Hinweis: Die Einstellung "Kürzester Weg" ist in der Maschinenkonfiguration zu finden. Der Parameter wurde bereits mit VISI 2017 R2 zugefügt und muss bei allen 5Achsen Maschinenkonfiguration aus **VISI 2017 R1 und älter** vom Anwender aktiviert werden!

N.C. Einschränkung Achsrotation	
Primäre Rotationsachse	Zwischen 0 und 360 🛛 🗸
Sekundäre Rotationsachse	Zwischen -180 und 180 🗸
Simulation kürzester Weg	

Der Status vom RTCP Management und die Einstellung Simulation kürzester Weg wird nun auch in der unteren Statusleiste der KinSim angezeigt.

Option "Automatische Verbesserung Qualität"

In den CAM-Einstellungen für die Werkzeugwegsimulation wurde eine Option eingefügt, um die "Automatische Qualitätsverbesserung" auszuschalten. So kann die Simulation an sehr großen und komplizierten Bauteilen beschleunigt werden.

Eigenschaften		
Eigenschaften Generelle Einstellungen Defaults Benutzeroberfläche 3 Achsenbearbeitung 2.5 Ax Bearbeitung Wire EDM Werkzeugwegsimulation Rohteilanalyse Krümmungsanalyse Automatische Erkennung Compasstechnologie Postprozessor CAM-Nullpunkt Parameter	Werkzeugwegeinstellung Ausgabe Interpolationsabstand 0.01 Anzahl angezeigte Elemente 1000 + Methode Führungspunkt Spitze Zeige PP Werkzeugwege • Normalen anzeigen • Normalen im Shading anzeigen • Einstellung für Wire EDM • Farbe obere Drahtführung • Anzeige Drahtführung ausblenden • Werkzeugwegeinstellung durch geometrische Elemente •	Einstellungen für kinematische Simulation Eine Hintergrundfarbe Verwende Farbverlauf ✓ Hintergrundfarbe (oben) Hintergrundfarbe (unten) Abtragsimulation einschalten ✓ Automatische Qualitätsverbesserung ✓ Farbeinstellung über Vorschub Bereich 1 ↓ 100 ↓ Bereich 2 ✓ 200 ↓ Bereich 3 ✓ 500 ↓

Verbesserungen der Qualität des Simulationsergebnisses von 3Ax Werkzeugwegen bei Verwendung von konkaven und torischen Werkzeugen.

Damit wird die Qualität von 3Achs Werkzeugwegen bei Verwendung von konkaven und torischen Werkzeugen verbessert. Die resultierenden Flächen nach der Bearbeitung sind nun detaillierter und stellen das tatsächliche Ergebnis wesentlich reeller dar.

Mit der neuen Tabbar **[Spannung]** kann nun auch die Sichtbarkeit der Spannmittel (Hindernisse) gesteuert werden.

Um den Status der Sichtbarkeit der Geometrieelemente (Werkzeug, Werkstück, Spannmittel, Rohteil, Maschinengehäuse und Ursprungsrohteil) besser zu kontrollieren, hat man nun die 4 folgenden Anzeigetabs integriert **[Einblenden]**, **[Sichtbar]**, **[Transparent]** und **[Ausblenden]**

Das Ursprungsrohteil lässt sich nun auch mit dem Status [Ausblenden] im Standard verbergen.

Aufteilung vom Fenster in 2, 3 oder 4 Ansichten

Das Fenster lässt sich nun in bis zu 4Ansichten aufteilen, über das Kontextmenü für Auswahl nach RMT (M2) **[Ansichtsfenster]** oder über den TAB **[Ansicht]** kann der Anwender die Anzahl der Ansichten festlegen.

Neuer Befehl [Zoom Window] im Kontextmenü

Mit diesem Befehl kann der Anwender über die Auswahl von zwei Punkten ein Fenster für Zoom + aufziehen.

Neuer Befehl [Vorherige Ansicht]

Der Anwender kann über das Kontextmenü (M2) oder alternativ über die Tastenkombination STRG+Z auf die vorherigen Ansichten zurückgreifen.

-		8
	Zoom Window	
	Wähle Punkt Dynamische Rotation	
	Anderes Sichtbares	
	Einpassen	
) Isometrisch	
in the second	Andere Ansichten	
	Vollbildmodus	
	Ansichtsfenster	
	Vorherige Ansicht	Ansicht 1
	Aufnahmebereich	Ansicht 2
	Starte Bildschirmvideo	Ansicht 3
	Aufnahmeoptionen	Ansicht 4
		Ansicht 5
		Ansicht 6

Verbesserungen in der NC-Satzliste

Informationsfelder wie Bearbeitungszeit, Vorschub, Schnittlänge ... können per "Drag and Drop" auf die gewünscht Position (Spalte) in der NC-Satzliste hinzugefügt werden.

	Schritt	Satz	Blk	Schritttyp	Vorschub	Bearbeitungs	zeit Y	Z	С
•	1			Anfahrt - Linie	0.0000	172.1	58 -332.528	399.020	135.000
	2	100	54	Anfahrt - Linie	10000.00000	00 172.1	58 -332.528	397.163	135.00
	3			Anfahrt - Linie	10000.00000	00 172.1	-332.528	395.306	135.000
	4			Anfahrt - Linie	10000.00000	0 172_1	-332 528	393.449	135.000
	5			Anfahrt - Linie	10000.00000	00 172	Feldauswahl x	391.591	135.000
	6			Anfahrt - Linie	10000.00000	0 172		389.734	135.000
	7			Anfahrt - Linie	10000.00000	0 172	Bearbeitungszeit	387.877	135.000
	8			Anfahrt - Linie	10000.00000	0 172_	Schrittlange	386.020	135.000
	9			Anfahrt - Linie	979.00000	0 172	Werkzeugspindel	384.020	135.00
	10			Kontur - Linie	1957.00000	0 172	Werkstückspindel	384.020	135.00
	11			Kontur - Linie	1957.00000	0 172		384.020	135.000
	12			Kontur - Linie	1957.00000	0 172		384.020	135.00
	13			Kontur - Linie	1957.00000	00 172		384.020	135.00
	14			Kontur - Linie	1957.00000	0 172		384.020	135.00
	15			Kontur - Linie	1957.00000	00 173.2	-343.043	384.020	135.000
	16			Kontur - Linie	1957.00000	00 174.1	20 -350.336	384.020	135.000
	17			Kontur - Linie	1957.00000	00 175.5	-351.709	384.020	135.000
	18			Kontur - Linie	1957.00000	176.8	-352.561	384.020	135.000
🛞 Sa	atzliste 🗊	Analys	e III.	Statistik 🔟 Maschine	e 🕨 Simulation				

Numerische Eingabefelder für die Achsensteuerung

Die Werte innerhalb der manuellen Achsensteuerung können numerisch eingegeben werden oder über die Spin-Buttons geändert werden.

Neue Option [Messgitter] im Reiter Ansicht

Um das Messen innerhalb einer Ansicht zu verbessern, hat man nun ein Messgitter integriert. Das Messgitter lässt sich im Reiter **[Ansicht]** aktivieren.

Neuer Befehl [Operation hervorheben] bei der Werkzeugwegdarstellung

laschinengehäuse	Werkzeugweg Darstellung *		
Werkzeugspi	tze 🕶 🏹 Fortschrittsmodus	Werkzeugvektoren	C Anfahr-/Ausfahrbewe
C. Op. hervorhe	ben 🤤 Segment	Schichtintervall *	Aktuelle Schicht

Mit diesem Befehl wird das System den Werkzeugweg der aktuellen Operation mit einer verstärkten Linienart hervorheben.

Ebenso gibt es einen neuen Befehl [Operation hervorheben] im Menü [Analyse]

Für den Anwender lassen sich somit die **[aktuelle Operation]** und die restlichen Operationen **[Andere Operationen]** farblich unterscheiden.

16 VISI PEPS Wire

Es wurde eine neue VISI PEPS Wire -Engine implementiert, um die bestehenden Funktionalitäten zu erweitern und um verschiedene Bugfixings zu integrieren. Für weitere Details lesen Sie dazu auch unter *What_Changed.pdf.*

Eine der in VISI 2018 R2 wichtigsten Verbesserungen ist das neue Option **[Verwende Bund-/Konik Featurehöhe]** beim Schneiden einer Matrize (Bund-Konik oder Konik-Bund).

Das neue Management kann in den CAM-Einstellungen im Fenster **[Wire EDM]** aktiviert werden. Mit dieser Option wird das System in der Bearbeitungsstrategie die reale Schnitttiefe (Bundhöhe) anstatt der maximalen Featuretiefe berechnen. Die Technologiewerte werden somit korrekt an die Maschine übergeben

Eigenschaften	
Eigenschaften Generelle Einstellungen Defaults Benutzeroberfläche 3 Achsenbearbeitung 2.5 Ax Bearbeitung Wire EDM Werkzeugwegsimulation Rohteilanalyse Krümmungsanalyse Automatische Erkennung Compasstechnologie Postprozessor CAM-Nullpunkt Parameter	Defaults Wire Maschine NC-Maschinenordner Mc-Maschinenordner Reportdatei Rundungsfaktor Technologiehöhe in (%) Bestätige NC Ausgabedateien Verwende Bund/Konik Featurehöhe Verwende Bund/Konik Featurehöhe Anfahrpunkte Verwende CAD Element für Anfahren Punkt Anfahrpunkte automatisch

Im Folgenden ein Beispiel:

Beschreibung Betrachte als komplett bearbeitet			Winkel	
Тир	Tasche mit variabler Konik		Eckenmodus	Scharf ~
Form	Unregelmäßig		Eckenradius	ISO-Radius 🗸
Subtyp	Durchgangsloch			Erneuern
Referenz (X,Y <i>Z</i>) Länge	25 27.93471× 0 75.8694	** ‡		Setze Konikwinkel Setze Typ Eckenbearbeitung Setze Typ Bearbeitung verrundete Ecken
Breite	55.8694			Richtung umkehren
ſiefe / Höhe	50		Winkelinkremen	it Konik U.5 😴
Eckenradius	12.9347		Bund Bundhöhe 5	
			-	

In Abhängigkeit der gewählten Strategie Konik<->Bund oder Bund<->Konik wird das System die korrekte Schnitttiefe berücksichtigen.

Operationen		x
q ¢	☆ ⊗ 🐸	^
Arbeitsgang Favoriten 2D Bearbeitung Bohrzyklus 3D Bearbeitung 3Ax Standardoperationen 3Ax Operation Vorlage Datei Wire-Drahterosionsbearbeitung	Konik->Bund Bund>Konik Bewege Konik->Bund Typ 1 Ausfallteilsicherung Typ 2 Ausfallteilsicherung Typ 3 Ausfallteilsicherung Typ 4 Smart Konik->Bund Smart Bund>Konik Ausfallteilsicherung Typ 6	
OK	Abbrechen	~

In diesem Fall wird die Konik zuerst und anschließend der Bund (Bundhöhe=5mm) geschnitten. Das System wird somit die korrekte Schneidhöhe für die Technologie berücksichtigen.

	Schnittmethode Technologie Anbindung Einfahren/Ausfahren Programmierte Eben
	Schnitte Ausgewählte Technologiedaten
	1 🛛 🖓 0 🔹 📜 Maschine
	2 0 0 Drahtsorte 1
	3 0 0 Tahtsorte 2
CAM Navigator	A Material
	Tec-Name
	S Schneidhöhe 50
C. Schnittsequenzen	6 Schneidbed.
	7 Schnitte 0
Wire: 2 Achsen - 1 Schnitt: T - Wire - D:0.3	
Wile 2 Achieft - I Schnitt - I - Wile - D.U.S	🥥 -001 🔛 🗞 🗞 🗞 🗐 🍹
A	Schnittmethode Technologie Anbindung Einfahren/Ausfahren Programmierte Eber
	Schritte Ausgewählte Technologiedaten
	1 🖸 🔁 🎦 Maschine
	2 Drahtsorte 1
	3 0 Drahtsorte 2
	4 0 Material
	5 0 C Tec-Name
	6 C 2 0 1 1 1 Schneidhöhe 5
	Schneidbed
	Schnitte 0

17 Messen

Bereits mit der VISI 2017 R2 wurden neue optionale Applikationen zum Messen im VISI integriert. Ohne das VISI zu verlassen, kann der Anwender nun die Messpunkte über eine Auswahl eines Messtasters am Werkstück definieren und in einem bestimmten Ausgabeformat an die Maschine exportieren. Bei der Definition der Messpunkte wird das System den Anwender darauf hinweisen, sobald sich Kollisionen zwischen Werkstück und Messtaster ergeben. Der Anwender kann ebenso ein Toleranzfeld für die Messpunkte festlegen.

Welche Vorteile ergeben sich durch die neuen Applikationen:

- Unterstützung automatisierter Prozesse wie zum Beispiel Elektrodenfertigung
- Hohe Zeitersparnis
- Beseitigung möglicher Fehlerquellen
- Eine in VISI integrierte Lösung

Für das Messen stehen die folgenden drei unterschiedlichen Applikationen zur Verfügung:

17.1 VCheck I (CMM)

Diese Applikation erlaubt die Programmausgabe für eine Koordinatenmessmaschine. Es werden die Flächenkontaktpunkte, die Vektoren und das Toleranzfeld für die Messmaschine aufbereitet.

17.2 VCheck II (Mill)

Diese Applikation erlaubt die Programmausgabe an die Fräsmaschine. Mit der Angabe der Steuerung, wie zum Beispiel iTNC530, wird das System anhand der Messpunkte eine NC-Datei für die Fräsmaschine generieren. Somit ist es auch möglich, einen Soll-Ist Vergleich auf der Maschinensteuerung auszuführen. Des Weiteren können die Messergebnisse zurückgelesen und im VISI visualisiert werden. Die Visualisierung erfolgt hierbei per Textinformationen und mit unterschiedlicher farblicher Darstellung, sobald es Toleranzabweichungen gibt. Das System ist ebenso in der Lage, einen HTML-Report von dem in VISI visualisierten Messergebnissen (Soll-Ist) zu erzeugen.

17.3 VCheckM

Mit VCheckM besteht für den Anwender die Möglichkeit, Messzyklen, beispielsweise zum Ausrichten, an die Fräsmaschine zu übergeben. Es werden hierbei die Messzyklen für die iTNC530 und TNC640 unterstützt. In einem Projektbaum wird ein Messtaster ausgewählt. Anschließend kann der gewünschte Messzyklus wie Grunddrehung, BZPKT Rechteck Außen ... etc. aus einer Liste mit den verfügbaren Zyklen hinzugefügt werden. Anschließend kann nun die NC-Datei für die Maschine generiert werden. Anhand dieser NC-Datei wird dann das Werkstück auf der Maschine komplett ausgerichtet.

Im VCheckM können auch die im CAM-Navigator ausgegebenen NC-Daten (Fräsen, Bohren) zurückgelesen werden. Die im CAM-Navigator ausgegebenen Werkzeuge und Operationen werden im Projektbaum von VCheckM in der gleichen Reihenfolge aufgelistet. Der Anwender kann in der vorhandenen Operationsliste auf einer beliebigen Position die Messzyklen hinzufügen, um anschließend eine neue NC-Datei inklusive der Messzyklen zu generieren.

18 Reverse Engineering

Mit VISI 2018 R2 wurde der erste Schritt gemacht, um VISI mit Reverse-Engineering Techniken auszustatten. Hierfür wurde ein neues Modul für die Bearbeitung von Punktewolken, sowie Generierung und Optimierung eines Netzes eingeführt. Dieses erlaubt unter anderem eine direkte Verbindung mit den mobilen Messarmen von Hexagon, um Modelle zu scannen, Punktewolken direkt zu laden, Punkte zu filtern, ein Netz zu generieren sowie dieses zu verfeinern und zu glätten.

18.1 Punkte scannen

Der neue Befehl **[Punkte scannen]** ist Bestandteil des Menüs Punktewolken. Damit kann eine Verbindung zwischen einem ROMER-Messarm mit externem oder integriertem Scanner über die RDS Verbindungsbibliothek (ROMER Data System) hergestellt werden.

Während des Scan-Vorgangs zeigt VISI das Ergebnis direkt am Bildschirm an. Auch die Anzahl der bereits gescannten Punkte wird in Echtzeit dargestellt.

Mehr Details zu den portablen Messarmen von Hexagon MI - ROMER Absolute Arm - finden Sie unter folgendem Link:

http://www.hexagonmi.com/de-DE/products/portable-measuring-arms

18.2 Punkte filtern

Das **[Punkt filtern]** erlaubt es, die selektierte Punktewolke zu filtern, in dem automatisch die verstreuten Ausreißerpunkte in der Wolke gelöscht werden und somit eine gleichförmigere Punkteverteilung gewährleistet wird.

18.3 Punkte in Mesh

Die Funktion **[Punkte in Mesh]** erzeugt aus der selektierten Punktewolke ein Mesh (Polygonnetz). Das System berechnet und schlägt automatisch die besten Parameter vor, die für die Netzberechnung verwendet werden. Der Anwender kann die Einstellungen auch verändern, um ein gewünschtes Resultat zu erreichen.

150	Image: Second	Punkte in Mesh
	Setze Farbe Verschiebe auf Layer Layer Erzeuge mehrere Meshes Erhalte Originalelemente	
	Automalisch Vorschau Anz. Mesh-Dreiecke: 210068]

18.4 Mesh verfeinern

Die Funktion **[Mesh verfeinern]** erlaubt es, ein Mesh zu editieren und zu glätten, indem Parameter wie die Abweichungstoleranz, Maximale Dreiecksanzahl, usw. eingegeben werden. So wird durch Anfügen und Verschieben von Knotenpunkten die Krümmungsqualität nochmals optimiert und so das Netz stetiger.

18.5 Mesh glätten

Die Möglichkeit, ein Mesh zu glätten, schließt die neue Funktionalität der Punktewolke ab. Mit verschiedenen Parametern kann der Anwender die hochfrequenten Messfehlerpunkte löschen, die niederfrequenten Punkte, die die Form des Modells bestimmen, bleiben hingegen erhalten.

Mesh glätten	- 🕂 🗙 🚺
🗹 🔀 🖘 🕋	glätten
Image: Second	ak Mish gaten
Automatisch Vorschau	

